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How do Lp Cuntz algebras fit in?

For d ∈ {2, 3, . . .}, we know about:

The Cuntz algebra Od .

The Leavitt algebra LK (d) over a field K .

These are a special case of, for a graph E ,

The C*-algebra C ∗(E ).

The Leavitt path algebra LK (E ) over a field K .

We have seen, and will see, many cases of parallel results for graph
C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on
Lp spaces. Maŕıa Eugenia Rodŕıguez (a student of Guillermo Cortiñas in
Buenos Aries) is working on the generalization to Lp operator graph
algebras. Based on what is known so far, it seems plausible that we will
get triples instead of pairs of parallel results, with the deeper explanation
still to be found.
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Buenos Aries) is working on the generalization to Lp operator graph
algebras. Based on what is known so far, it seems plausible that we will
get triples instead of pairs of parallel results, with the deeper explanation
still to be found.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 3 / 34



How do Lp Cuntz algebras fit in?

For d ∈ {2, 3, . . .}, we know about:

The Cuntz algebra Od .

The Leavitt algebra LK (d) over a field K .

These are a special case of, for a graph E ,

The C*-algebra C ∗(E ).

The Leavitt path algebra LK (E ) over a field K .

We have seen, and will see, many cases of parallel results for graph
C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on
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A summary of results
Our algebras Op

d , for d ∈ {2, 3, . . . , } and p ∈ [1,∞), have the following
properties:

O2
d is the usual Cuntz algebra.

Uniqueness: Any representation of a particular type gives the same
Banach algebra up to isometric isomorphism.

Op
d is simple.

Op
d is purely infinite.

Op
d is amenable as a Banach algebra.

Op
d has the same K-theory as when p = 2.

Different for different p: For p1 6= p2 and any d1 and d2, there is no
nonzero continuous homomorphism from Op1

d1
to Op2

d2
.

The proof of simplicity and the computation of the K-theory use analogs
of UHF algebras on Lp spaces; more about them when we need them.

Many questions are open. For example, is Op
2 ⊗p Op

2 (spatial Lp tensor
product) isomorphic to Op

2?
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Notation for Leavitt algebras
From now on, we always take the base field to be C.

Definition

Let d ∈ {2, 3, 4, . . .}. We define the Leavitt algebra Ld to be the universal
complex associative algebra on generators s1, s2, . . . , sd , t1, t2, . . . , td
satisfying the relations:

tjsj = 1 for j ∈ {1, 2, . . . , d},

satisfying the relations:

tjsk = 0 for j , k ∈ {1, 2, . . . , d} with j 6= k,

and satisfying the relations:

d∑
j=1

sj tj = 1.
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Cuntz algebras
Ld is the Leavitt algebra, taken to be generated by
s1, s2, . . . , sd , t1, t2, . . . , td , in which the sj play the role of the isometries
and the tj play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many
representations ρ : Ld → L(H). The “good” ones are the representations ρ
such that

ρ(tj) = ρ(sj)
∗ for j = 1, 2, . . . , d . (1)

The uniqueness theorem for Cuntz algebras implies that one can define
Od = ρ(Ld) for any unital representation ρ satisfying (1), In fact, if
ρ1 : Ld → L(H) and ρ2 : Ld → L(H2) are unital representations on Hilbert
spaces satisfying (1), then there exists an isometric (*-)isomorphism
ϕ : ρ1(Ld) → ρ2(Ld) such that

ϕ(ρ1(sj)) = ρ2(sj) and ϕ(ρ1(tj)) = ρ2(tj)

for j = 1, 2, . . . , d .
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Lp analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of Ld

will be taken to be unital.

Recall: Od = ρ(Ld) for any unital representation ρ : Ld → L(H) such that
ρ(tj) = ρ(sj)

∗for j = 1, 2, . . . , d .

For p ∈ [1,∞) \ {2}, we will take (definitions and justifications to follow)
the algebra Op

d to be defined by Op
d = ρ(Ld) for any spatial representation

ρ : Ld → L(Lp(X , µ)) for a σ-finite measure space (X ,B, µ).

We will have to define spatial representations, and show that if
ρ : Ld → L(Lp(X , µ)) and ρ : Ld → L(Lp(Y , ν)) are spatial representations,
then there exists an isometric isomorphism ϕ : ρ1(Ld) → ρ2(Ld) such that
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Towards a quick definition of Op
d

For any set S , give lp(S) the usual meaning (using counting measure
on S). Let lpd = lp

(
{1, 2, . . . , d}

)
.

Let Mp
d = L

(
lpd
)

with the usual operator
norm, and algebraically identify Mp

d with Md in the standard way.

We can replace counting measure on S by any strictly positive scalar
multiple of counting measure, and still get the “same” space of operators
on lp(S). We will suppress the distinction.

We have a canonical inclusion of Md in Ld which sends the standard
matrix unit ej ,k to sj tk . For any representation ρ : Ld → L(Lp(X , µ)), we
thus get a representation ρ|Md

: Md → L(Lp(X , µ)).

Definition

Let (X ,B, µ) be a σ-finite measure space and let p ∈ [1,∞) \ {2}. We
define a representation ρ : Ld → L(Lp(X , µ)) to be spatial if:

‖ρ(sj)‖, ‖ρ(tj)‖ ≤ 1 for j = 1, 2, . . . , d .

As a map Mp
d → L(Lp(X , µ)), the representation ρ|Md

is contractive.
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Recall: the representation ρ : Ld → L(Lp(X , µ)) is spatial if:

‖ρ(sj)‖, ‖ρ(tj)‖ ≤ 1 for j = 1, 2, . . . , d .

As a map Mp
d → L(Lp(X , µ)), the representation ρ|Md

is contractive.

Example
Define functions f1, f2, . . . , fd : Z>0 → Z>0 by

fj(n) = d(n − 1) + j

for n ∈ Z>0. These are injective and have disjoint ranges whose union
is Z>0. Define ρ(sj), ρ(tj) ∈ L(lp(Z>0)) by, for ξ =

(
ξ(1), ξ(2), . . .

)
∈ lp

and n ∈ Z>0,

(ρ(sj)ξ)(n) =

{
ξ
(
f −1
d ,j (n)

)
n ∈ ran(fd ,j)

0 n 6∈ ran(fd ,j)
and (ρ(tj)ξ)(n) = ξ(fd ,j(n)).

If d = 2, then

ρ(s1)ξ = (ξ(1), 0, ξ(2), 0, ξ(3), 0, . . .) and ρ(t1)ξ = (ξ(1), ξ(3), ξ(5), . . .).

It is not hard to prove that this gives a spatial representation.
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Equivalent conditions for a representation to be spatial
We define below a “spatial partial isometry”. Then the equivalent
conditions in the following theorem define a spatial representation of Mp

d .

Theorem
Let p ∈ [1,∞) \ {2}, let (X ,B, µ) be a σ-finite measure space, and let
ρ : Md → L(Lp(X , µ)) be a representation. Then the following are
equivalent:

1 ρ(ej ,k) is a spatial partial isometry for j , k = 1, 2, . . . , d .

2 ρ is isometric as a map Mp
d → L(Lp(X , µ)).

3 ρ is contractive as a map Mp
d → L(Lp(X , µ)).

4 ‖ρ(ej ,k)‖ ≤ 1 for j , k = 1, 2, . . . , d , and there is a partition

X =
∐d

j=1 Xj such that ρ(ej ,j) is multiplication by χXj
for all j .

5 There is a partition X =
∐d

j=1 Xj such that ρ(ej ,k) is zero on
Lp(X \ Xk , µ) and is an isometric isomorphism Lp(Xk , µ) → Lp(Xj , µ)
for all j , k.
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Spatial representations

The theorem on the previous page gave five equivalent conditions for a
representation ρ : Md → L(Lp(X , µ)) to be spatial. Part of the intention is
to make the case that this is a very natural class of representations to
consider.

Spatial representations are quite rigid. This is shown in condition (5):

There is a partition X =
∐d

j=1 Xj such that ρ(ej ,k) is zero on
Lp(X \ Xk , µ) and is an isometric isomorphism
Lp(Xk , µ) → Lp(Xj , µ) for all j , k.

The next theorem gives equivalent conditions for a representation of Ld to
be spatial. Again, there are a number of them, suggesting that this is a
natural class of representations. Again, spatial representations are quite
rigid. There are also about an equal number of equivalent conditions
which we omit.
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Theorem
Let p ∈ (1,∞) \ {2}, let (X ,B, µ) be a σ-finite measure space, and let
ρ : Ld → L(Lp(X , µ)) be a representation. Then the following are
equivalent:

1 ρ is spatial: ‖ρ(sj)‖, ‖ρ(tj)‖ ≤ 1 for all j , and ρ|Md
is spatial.

2 ρ(sj) is an isometry for all j and ρ|Md
is spatial.

3 ρ(sj) is a spatial partial isometry for all j .

4 ρ(tj) is a spatial partial isometry for all j .

5
(
ρ(s1) ρ(s2) · · · ρ(sd)

)
is a row isometry: it defines an isometry

Lp(X , µ)⊕p Lp(X , µ)⊕p · · · ⊕p Lp(X , µ) → Lp(X , µ).

6 ρ(sj) is an isometry for all j and for j = 1, 2, . . . , d there is Xj ⊂ X
such that ran(ρ(sj)) = Lp(Xj , µ).

7 With 1
p + 1

q = 1, the transpose representation ρ′ of Ld on Lq(X , µ),

determined by ρ′(sj) = ρ(tj)
′ and ρ′(tj) = ρ(sj)

′ for all j , satisfies any
of the conditions above.
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Spatial representations of Ld

Recall the row isometry condition from the previous theorem:(
ρ(s1) ρ(s2) · · · ρ(sd)

)
defines an isometry

Lp(X , µ)⊕p Lp(X , µ)⊕p · · · ⊕p Lp(X , µ) → Lp(X , µ).

We can rewrite this as follows:

For λ = (λ1, λ2, . . . , λd) ∈ Cd , the
operator

d∑
j=1

λjρ(sj)

is a scalar multiple of an isometry, with the scalar being ‖λ‖p. For p = 2,
this condition also characterizes the representations ρ such that
ρ(tj) = ρ(sj)

∗ for j = 1, 2, . . . , d .

Applying this condition to the transpose representation, we find, for
example, that ∥∥∥∥∑d

j=1
λjρ(tj)

∥∥∥∥ = ‖λ‖q.
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What is a spatial partial isometry?
For p ∈ (0,∞) \ {2}, there are very few isometries on Lp(X , µ). For
example, the only isometries on lpd are the “complex permutation
matrices”:

let σ be a permutation of {1, 2, . . . , d}, let λ1, λ2, . . . , λd ∈ C
have absolute value 1, and consider

d∑
j=1

λjej , σ(j).

Begin with some examples of isometries.

1 Let f : X → C satisfy |f | = 1 a.e. [µ]. Then multiplication by f is an
isometry on Lp(X , µ).

2 Let (X ,B, µ) and (Y , C, ν) be measure spaces. Let Y0 ⊂ Y . Let
h : X → Y0 be a bimeasurable bijection such that ν(h(E )) = µ(E ) for
all E ⊂ X . Then define v : Lp(X , µ) → Lp(Y , ν) by

(vξ)(y) =

{
ξ(h−1(y)) y ∈ Y0

0 y 6∈ Y0.
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What is a spatial partial isometry? (continued)
Examples of isometries (continued):

1 As before: Multiplication by functions of absolute value 1.

2 As before: Let Y0 ⊂ Y . Let h : X → Y0 be a measure preserving
bijection. Then define v : Lp(X , µ) → Lp(Y , ν) by

(vξ)(y) =

{
ξ(h−1(y)) y ∈ Y0

0 y 6∈ Y0.

3 (A modification of the preceding example.)

Let (X ,B, µ) and
(Y , C, ν) be σ-finite measure spaces. Let h : X → Y0 be a
bimeasurable bijection such that for E ⊂ X we have ν(h(E )) = 0 if
and only if µ(E ) = 0. Then define v : Lp(X , µ) → Lp(Y , ν) by

(vξ)(y) =


([

dh∗(µ)
dν

]
(y)
)1/p

ξ(h−1(y)) y ∈ Y0

0 y 6∈ Y0.
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What is a spatial partial isometry? (continued)
1 As before: Multiplication by functions of absolute value 1.

2 As before: Composition with the inverse of a measure preserving
bijection from X to a subset of Y .

3 As before: Composition with the inverse of a measure class preserving
bijection from X to a subset of Y , corrected by multiplying by a
suitable power of a Radon-Nikodym derivative.

4 Let (X ,B, µ) and (Z ,D, λ) be σ-finite measure spaces. Set
(Y , C, ν) = (X ,B, µ)× (Z ,D, λ). Choose η0 ∈ Lp(Z , λ) such that
‖η0‖ = 1, and consider the map ξ 7→ ξ ⊗ η0 from Lp(X , µ) to
Lp(Y , ν).

Lamperti’s Theorem (1958) states that, roughly speaking, if (X ,B, µ) and
(Y , C, ν) are σ-finite and p 6= 0, 2,∞, then every isometry from Lp(X , µ)
to Lp(Y , ν) is a combination of isometries of these types.

(One might need to make do with something a bit weaker than a point
map in (2) and (3), and (4) is only a special case of something more
general but following the same basic idea.)
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Lamperti: For p 6= 0, 2,∞, every isometry from Lp(X , µ) to Lp(Y , ν) is a
composition, in this order, of operators almost of the following types:

1 Use something close to a measure class preserving bijection to map
from Lp(X , µ) to Lp(Z , λ).

2 Apply a generalization of ξ 7→ ξ ⊗ η0 to map to Lp(Y0, ν) ⊂ Lp(Y , ν).

3 Multiply by a function on Y0 of absolute value 1.

Definition
An isometry is spatial if the second factor above does not occur. A spatial
partial isometry is a map Lp(X , µ) to Lp(Y , ν) of the form multiplication
by a characteristic function χX0 followed by a spatial isometry from
Lp(X0, µ) to Lp(Y , ν).

Remark
A surjective isometry is necessarily spatial.

Remark
A spatial partial isometry s has a “reverse”, which plays the role of s∗ for
a partial isometry on a Hilbert space.
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Equivalence of conditions for a representation to be spatial
We gave lists of equivalent conditions for a representation of Md to be
spatial, and for a representation of Ld to be spatial. Some of them involved
the notion of a spatial partial isometry, and some didn’t. For example:

A contractive representation of Mp
d must be spatial.

If ρ is a representation of Ld such that
(
ρ(s1) ρ(s2) · · · ρ(sd)

)
is a

row isometry, then ρ(sj) is a spatial isometry for all j .

If ρ is a representation of Ld such that ‖ρ(sj)‖, ‖ρ(tj)‖ ≤ 1 for all j ,
and ρ|Md

is contractive as a map on Mp
d , then ρ(sj) is spatial for all j .

The trickiest part is to prove that if ρ is a contractive representation of
Mp

d on Lp(X , µ), then ρ(ej ,j) is a multiplication operator.

t 7→ ρ
(
1− ej ,j + e itej ,j

)
is a homotopy of isometries, spatial since they are

surjective. One can check that the associated maps X → X (or, rather,
slightly weaker substitutes) are constant along a homotopy. Therefore they
are all the identity map, so ρ(1− 2ej ,j) is a multiplication operator.

Question: What happens if we use R instead of C?
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Uniqueness and simplicity

Theorem (Uniqueness)

Let p ∈ [1,∞) \ {2}, and let ρ1 and ρ2 be spatial representations on
Lp-spaces (using σ-finite measures). Then there is an isometric
isomorphism ϕ : ρ1(Ld) → ρ2(Ld) such that

ϕ(ρ1(sj)) = ρ2(sj) and ϕ(ρ1(tj)) = ρ2(tj)

for j = 1, 2, . . . , d .

Definition

We define Op
d = ρ(Ld) for any spatial representation ρ of Ld on an

Lp space (using a σ-finite measure).

Theorem (Simplicity)

Let p ∈ [1,∞) \ {2}. Then Op
d is simple.
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About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent.

For the analogs on Lp spaces, we seem to need entirely different proofs for
them.

Suppose I is a closed ideal in Op
d . To get anything out of uniqueness, we

need a representation of Op
d/I on an Lp space. The best known related

theorem is for too weak; with 1
p + 1

q = 1, it allows Lr (Y , ν) for any r
between p and q (and other spaces besides).

Suppose we know that Op
d is simple, and we want to prove uniqueness.

We at least need to know that every contractive representation on an
Lp space is isometric. But there are simple operator algebras on Lp spaces
with representations on Lp spaces which do not even have closed range.

The proof of simplicity is much like Cuntz’s original proof. The proof of
uniqueness is completely different, and does not work for p = 2.
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Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ.

Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z).

Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.

Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness

Fix p ∈ [1,∞) \ {2}.

Definition

A representation σ : Ld → L(Lp(Y , ν)) is free if there is a partition
Y =

∐
m∈Z Em such that for all m ∈ Z and all j , we have

σ(sj)(L
p(Em, ν)) ⊂ Lp(Em+1, ν) and σ(tj)(L

p(Em, ν)) ⊂ Lp(Em−1, ν).

Let ρ : Ld → L(Lp(X , µ)) be a spatial representation. Let Y = X × Z, let
λ be counting measure on Z, and set ν = µ× λ. Use tensor product
notation for operators on Lp(Y , ν), thought of as a suitable Banach space
tensor product Lp(X , µ)⊗ lp(Z). Let u ∈ L(lp(Z)) be the bilateral shift.
Then there is a representation σ : Ld → L(Lp(Y , ν)) such that

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1

for j = 1, 2, . . . , d . This representation is free.

N. C. Phillips (University of Oregon) Lp Cuntz algebras 24 April 2013 21 / 34



Ideas of the proof of uniqueness (continued)

ρ : Ld → L(Lp(X , µ)) is a spatial representation,

Lp(Y , ν) = Lp(X × Z, µ× λ) = Lp(X , µ)⊗ lp(Z),

and σ : Ld → L(Lp(Y , ν)) is a free spatial representation determined by

σ(sj) = ρ(sj)⊗ u and σ(tj) = ρ(tj)⊗ u−1.

Let a ∈ Ld .

Identify Lp(Y , ν) with lp(Z, Lp(X , µ)). By considering the
action on elements of the form

(. . . , 0, 0, ξ, ξ, . . . , ξ, ξ, 0, 0, . . .),

with a large number of occurrences of ξ, one can show that
‖σ(a)‖ ≥ ‖ρ(a)‖.
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Ideas of the proof of uniqueness (continued)
Given a spatial representation ρ of Ld , we found a free spatial
representation σ of Ld such that ‖σ(a)‖ ≥ ‖ρ(a)‖ for all a ∈ Ld .

Now suppose that ρ is any spatial representation and σ is any free spatial
representation. We outline how to show that ‖σ(a)‖ ≤ ‖ρ(a)‖.

Suppose that the spatial isometries ρ(sj) are associated with measure class

preserving bijections hj : X → Xj , with X =
∐d

j=1 Xj . For any word

α = (α(1), α(2), . . . , α(l)) in {1, 2, . . . , d}l , set

hα = hα(1) ◦ hα(2) ◦ · · · ◦ hα(l).

A combinatorial argument can be used to show that for every N ∈ Z>0

there is E ⊂ X with µ(E ) > 0 such that the sets hα(E ), for all words α of
length up to N, are disjoint.

This is enough to be able to approximately reconstruct the free
representation σ approximately as a subrepresentation of the
representation a 7→ ρ(a)⊗ 1 on Lp(X × Y , µ× ν). For a ∈ Ld , one then
gets ‖σ(a)‖ ≤ ‖ρ(a)⊗ 1‖ = ‖ρ(a)‖.
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Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as
the original proofs of Cuntz, except that one must check many more
things because, for example, injective homomorphisms need not be
isometric or even have closed range.

We need simplicity of the analog of the UHF core.

Here we need to do
more work: it is probably not true that the direct limit of simple
Lp operator algebras is simple.

The construction is to represent Mp
d on lpd = Lp

(
{1, 2, . . . , d}, λ

)
, but

taking λ to be counting measure normalized to have total mass 1. Then
set X = {1, 2, . . . , d}Z>0 with the infinite product measure µ, represent⊗n

k=1 Mp
d on Lp(X , µ) by letting it act nontrivially on

Lp
(
{1, 2, . . . , d}k , λ× λ× · · · × λ

)
,

and take the closure of the union over n ∈ Z>0 of the images of these.
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Analogs of UHF algebras on Lp spaces
Recall: λ is normalized counting measure, lpd = Lp

(
{1, 2, . . . , d}λ

)
,

X = {1, 2, . . . , d}Z>0 , and µ is the infinite product of copies of λ.

We write X = Xn × Yn with

Xn =
n∏

k=1

{1, 2, . . . , d} = {1, 2, . . . , d}n and Yn =
∞∏

k=n+1

{1, 2, . . . , d},

with product measures µn and νn.

We get (using a suitable Banach space tensor product)

Lp(X , µ) = Lp(Xn, µn)⊗p Lp(Yn, νn) and Lp(Xn, µn) =
n⊗

k=1

lpd .

Then we get an obvious representation σn :
⊗n

k=1 Mp
d → L(Lp(Xn, µn)).

Define ρn :
⊗n

k=1 Mp
d → L(Lp(X , µ)) by ρn(a) = σn(a)⊗ 1. Set

Dn = ρn

(
n⊗

k=1

Mp
d

)
and D =

∞⋃
n=0

Dn.
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Simplicity of Lp UHF algebras

Recall (abusing notation):

D =
∞⋃

n=0

n⊗
k=1

Mp
d =

∞⊗
k=1

Mp
d .

Let S ⊂ Z>0. If S ⊂ {1, 2, . . . , n}, then we can interpret
⊗

k∈S Mp
d

as a
subalgebra of

⊗n
k=1 Mp

d , spanned by{
a1 ⊗ a2 ⊗ · · · ⊗ an : ak ∈ Mp

d for all k and ak = 1 for k 6∈ S
}
.

For general S ⊂ Z>0, we take DS ⊂ D to be

DS =
∞⋃

n=0

⊗
k∈S∩{1,2,...,n}

Mp
d
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Simplicity of Lp UHF algebras: conditional expectations
Recall (abusing notation): For S ⊂ Z>0,

DS =
∞⋃

n=0

⊗
k∈S∩{1,2,...,n}

Mp
d =

⊗
k∈S

Mp
d .

Let G ⊂ Mp
d be the group of signed permutation matrices,

that is,
d∑

j=1

λjej , σ(j) : σ is a permutation of {1, . . . , d} and λj ∈ {1, −1} for all j

 .

Let tr be the normalized trace. Then

1

card(G )

∑
g∈G

gag−1 = tr(a) · 1

for all a ∈ Mp
d . Since the elements of G are isometries, this formula defines

a contractive Banach algebra conditional expectation Mp
d → C · 1.
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Simplicity of Lp UHF algebras: end of the proof
Recall: For S ⊂ Z>0,

DS =
∞⋃

n=0

⊗
k∈S∩{1,2,...,n}

Mp
d =

⊗
k∈S

Mp
d ,

and we have closed ideal preserving Banach algebra conditional
expectations ET ,S : DT → DS for S ⊂ T .

In particular,

EZ>0, {1,2,...,n} : D → Dn =
n⊗

k=1

Mp
d .

One can check that for a ∈ D = DZ>0 , we have

lim
n→∞

EZ>0, {1,2,...,n}(a) = a.

Now let I ⊂ D be a nonzero closed ideal. Choose a ∈ I with a 6= 0. Then
there is n such that EZ>0, {1,2,...,n}(a) is a nonzero element of
I ∩
⊗n

k=1 Mp
d . Since

⊗n
k=1 Mp

d is simple, 1 ∈ I , so I = D.
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Spatial Lp UHF algebras: the general case
The algebra D =

⊗∞
k=1 Mp

d we considered is “spatial”, because we made
it using spatial representations of Mp

d .

We considered the UHF algebra of type d∞ because it is the one needed
for simplicity of Op

d , and to simplify notation. We get a spatial Lp UHF
algebra for every supernatural number N.

Theorem

For every supernatural number N and every p ∈ [1,∞), the Lp UHF
algebra with supernatural number N:

Is simple with unique continuous normalized trace.

Has the expected ordered topological K-theory.

Has the property that every contractive unital representation on an
Lp space is isometric.

Also, for different values of p, in at least one direction there are no
nonzero continuous homomorphisms. So they can’t be isomorphic.
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Nonspatial Lp UHF algebras

One can consider representations of Mp
d on Lp spaces more general than

the identity representation on lpd .

For example, if S ⊂ Mp
d is countable and

its closure is a compact subset of the invertible group, consider
X =

∐
v∈S{1, 2, . . . , d}, with a measure µ normalized to make µ(X ) = 1,

and take
ρS(a) =

⊕
v∈S

vav−1.

If we take S to consist of diagonal matrices, then ‖ρS(ej ,j)‖ = 1 for all j .

Consider infinite tensor products of matrix algebras Mdn using subsets Sn

of the diagonal matrices in Mdn . Then I think I can show:

For fixed p and supernatural number N, there are uncountably many
isomorphism classes of these. (Isomorphism need not be isometric.)

The algebra is isomorphic to the spatial one if and only if it is
amenable in the sense of Banach algebras.
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Lp operator crossed products
Cuntz’s original calculation of the K-theory seems not to work for Op

d .

Instead, we adapt the crossed product method. Thus, we define reduced
crossed products F p

r (G ,A, α) for isometric actions α of a second countable
locally compact group on a closed subalgebra A ⊂ L(Lp(X , µ)) (with µ
σ-finite).

(There are also full crossed products F p(G ,A, α). We know very little
about the map F p(G ,A, α) → F p

r (G ,A, α), but it seems much less likely
to be an isomorphism than in the C* case.)

(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)

Let D be the spatial Lp UHF algebra of type d∞. We construct an action
α of Z on M∞ ⊗p D, essentially the same as in the C* case, such that

F p
r (Z,D, α) ∼= M∞ ⊗p Op

d .

(We have M∞ = K (lp) for p ∈ (1,∞), but not for p = 1.) Many details,
automatic in the C* case, must be explicitly checked.
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α of Z on M∞ ⊗p D, essentially the same as in the C* case, such that

F p
r (Z,D, α) ∼= M∞ ⊗p Op

d .

(We have M∞ = K (lp) for p ∈ (1,∞), but not for p = 1.) Many details,
automatic in the C* case, must be explicitly checked.
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K-theory of Op
d

We had
F p

r (Z,D, α) ∼= M∞ ⊗p Op
d .

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced
Lp operator crossed products by Z.

(Use closure under holomorphic
functional calculus to reduce to a smooth version, and apply an old joint
paper with Schweitzer.)

One gets, as for C*-algebras, K1

(
Op

d

)
= 0 and an isomorphism

K0

(
Op

d

)
→ Z/(d − 1)Z which sends [1] ∈ K0

(
Op

d

)
to the standard

generator 1 + (d − 1)Z.
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Lp operator crossed products
There are many things to do with Lp operator crossed products. Here are
two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a
compact metric space X . Then F p

r (G ,C (X )) is simple.

In the C* case, essential freeness is enough. We don’t know whether this
is true in general.

Theorem (Sanaz Pooya)

For p ∈ (1,∞), the reduced Lp group algebra of a countable nonabelian
free group is simple.

In the C* case, this was done by Powers. It isn’t true for p = 1.
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