Analogs of Cuntz algebras on L^{p} spaces

N. Christopher Phillips
University of Oregon

24 April 2013

Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras)

Banff International Research Station

22-26 April 2013

This material is based on work supported by the US National Science Foundation under Grants DMS-0701076 and DMS-1101742. It was also partially supported by the Centre de Recerca Matemàtica (Barcelona) through a research visit conducted during 2011, and by the Research Institute for Mathematical Sciences of Kyoto University through a visiting professorship in 2011-2012.

Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras)

Banff International Research Station

22-26 April 2013

This material is based on work supported by the US National Science Foundation under Grants DMS-0701076 and DMS-1101742. It was also partially supported by the Centre de Recerca Matemàtica (Barcelona) through a research visit conducted during 2011, and by the Research Institute for Mathematical Sciences of Kyoto University through a visiting professorship in 2011-2012.

Graph algebras: Bridges between graph C*-algebras and Leavitt path algebras)

Banff International Research Station

22-26 April 2013

This material is based on work supported by the US National Science Foundation under Grants DMS-0701076 and DMS-1101742. It was also partially supported by the Centre de Recerca Matemàtica (Barcelona) through a research visit conducted during 2011, and by the Research Institute for Mathematical Sciences of Kyoto University through a visiting professorship in 2011-2012.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

We have seen, and will see, many cases of parallel results for graph C*-algebras and Leavitt path algebras, not well explained.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

We have seen, and will see, many cases of parallel results for graph C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on L^{p} spaces. María Eugenia Rodríguez (a student of Guillermo Cortiñas in Buenos Aries) is working on the generalization to L^{p} operator graph algebras.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

We have seen, and will see, many cases of parallel results for graph C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on L^{p} spaces. María Eugenia Rodríguez (a student of Guillermo Cortiñas in Buenos Aries) is working on the generalization to L^{p} operator graph algebras. Based on what is known so far, it seems plausible that we will get triples instead of pairs of parallel results, with the deeper explanation still to be found.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

We have seen, and will see, many cases of parallel results for graph C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on L^{p} spaces. María Eugenia Rodríguez (a student of Guillermo Cortiñas in Buenos Aries) is working on the generalization to L^{p} operator graph algebras. Based on what is known so far, it seems plausible that we will get triples instead of pairs of parallel results, with the deeper explanation still to be found.

How do L^{p} Cuntz algebras fit in?

For $d \in\{2,3, \ldots\}$, we know about:

- The Cuntz algebra \mathcal{O}_{d}.
- The Leavitt algebra $L_{K}(d)$ over a field K.

These are a special case of, for a graph E,

- The C^{*}-algebra $C^{*}(E)$.
- The Leavitt path algebra $L_{K}(E)$ over a field K.

We have seen, and will see, many cases of parallel results for graph C*-algebras and Leavitt path algebras, not well explained.

We introduce analogs of Cuntz algrabras which act as operators on L^{p} spaces. María Eugenia Rodríguez (a student of Guillermo Cortiñas in Buenos Aries) is working on the generalization to L^{p} operator graph algebras. Based on what is known so far, it seems plausible that we will get triples instead of pairs of parallel results, with the deeper explanation still to be found.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.
- Different for different p : For $p_{1} \neq p_{2}$ and any d_{1} and d_{2}, there is no nonzero continuous homomorphism from $\mathcal{O}_{d_{1}}^{p_{1}}$ to $\mathcal{O}_{d_{2}}^{p_{2}}$.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.
- Different for different p : For $p_{1} \neq p_{2}$ and any d_{1} and d_{2}, there is no nonzero continuous homomorphism from $\mathcal{O}_{d_{1}}^{p_{1}}$ to $\mathcal{O}_{d_{2}}^{p_{2}}$.

The proof of simplicity and the computation of the K-theory use analogs of UHF algebras on L^{p} spaces; more about them when we need them.

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.
- Different for different p : For $p_{1} \neq p_{2}$ and any d_{1} and d_{2}, there is no nonzero continuous homomorphism from $\mathcal{O}_{d_{1}}^{p_{1}}$ to $\mathcal{O}_{d_{2}}^{p_{2}}$.

The proof of simplicity and the computation of the K-theory use analogs of UHF algebras on L^{p} spaces; more about them when we need them.

Many questions are open. For example, is $\mathcal{O}_{2}^{p} \otimes_{p} \mathcal{O}_{2}^{p}$ (spatial L^{p} tensor product) isomorphic to \mathcal{O}_{2}^{P} ?

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.
- Different for different p : For $p_{1} \neq p_{2}$ and any d_{1} and d_{2}, there is no nonzero continuous homomorphism from $\mathcal{O}_{d_{1}}^{p_{1}}$ to $\mathcal{O}_{d_{2}}^{p_{2}}$.

The proof of simplicity and the computation of the K-theory use analogs of UHF algebras on L^{p} spaces; more about them when we need them.

Many questions are open. For example, is $\mathcal{O}_{2}^{p} \otimes_{p} \mathcal{O}_{2}^{p}$ (spatial L^{p} tensor product) isomorphic to \mathcal{O}_{2}^{P} ?

A summary of results

Our algebras \mathcal{O}_{d}^{p}, for $d \in\{2,3, \ldots$,$\} and p \in[1, \infty)$, have the following properties:

- \mathcal{O}_{d}^{2} is the usual Cuntz algebra.
- Uniqueness: Any representation of a particular type gives the same Banach algebra up to isometric isomorphism.
- \mathcal{O}_{d}^{p} is simple.
- \mathcal{O}_{d}^{p} is purely infinite.
- \mathcal{O}_{d}^{p} is amenable as a Banach algebra.
- \mathcal{O}_{d}^{p} has the same K-theory as when $p=2$.
- Different for different p : For $p_{1} \neq p_{2}$ and any d_{1} and d_{2}, there is no nonzero continuous homomorphism from $\mathcal{O}_{d_{1}}^{p_{1}}$ to $\mathcal{O}_{d_{2}}^{p_{2}}$.

The proof of simplicity and the computation of the K-theory use analogs of UHF algebras on L^{p} spaces; more about them when we need them.

Many questions are open. For example, is $\mathcal{O}_{2}^{p} \otimes_{p} \mathcal{O}_{2}^{p}$ (spatial L^{p} tensor product) isomorphic to \mathcal{O}_{2}^{P} ?

Notation for Leavitt algebras

From now on, we always take the base field to be \mathbb{C}.

Definition

Let $d \in\{2,3,4, \ldots\}$. We define the Leavitt algebra L_{d} to be the universal complex associative algebra on generators $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$ satisfying the relations:

$$
t_{j} s_{j}=1 \quad \text { for } j \in\{1,2, \ldots, d\}
$$

satisfying the relations:

$$
t_{j} s_{k}=0 \quad \text { for } j, k \in\{1,2, \ldots, d\} \text { with } j \neq k
$$

and satisfying the relations:

$$
\sum_{j=1}^{d} s_{j} t_{j}=1
$$

Notation for Leavitt algebras

From now on, we always take the base field to be \mathbb{C}.

Definition

Let $d \in\{2,3,4, \ldots\}$. We define the Leavitt algebra L_{d} to be the universal complex associative algebra on generators $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$ satisfying the relations:

$$
t_{j} s_{j}=1 \quad \text { for } j \in\{1,2, \ldots, d\}
$$

satisfying the relations:

$$
t_{j} s_{k}=0 \quad \text { for } j, k \in\{1,2, \ldots, d\} \text { with } j \neq k
$$

and satisfying the relations:

$$
\sum_{j=1}^{d} s_{j} t_{j}=1
$$

Notation for Leavitt algebras

From now on, we always take the base field to be \mathbb{C}.

Definition

Let $d \in\{2,3,4, \ldots\}$. We define the Leavitt algebra L_{d} to be the universal complex associative algebra on generators $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$ satisfying the relations:

$$
t_{j} s_{j}=1 \quad \text { for } j \in\{1,2, \ldots, d\}
$$

satisfying the relations:

$$
t_{j} s_{k}=0 \quad \text { for } j, k \in\{1,2, \ldots, d\} \text { with } j \neq k
$$

and satisfying the relations:

$$
\sum_{j=1}^{d} s_{j} t_{j}=1
$$

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

$$
\begin{equation*}
\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*} \quad \text { for } j=1,2, \ldots, d \tag{1}
\end{equation*}
$$

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

$$
\begin{equation*}
\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*} \quad \text { for } j=1,2, \ldots, d \tag{1}
\end{equation*}
$$

The uniqueness theorem for Cuntz algebras implies that one can define $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation ρ satisfying (1),

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

$$
\begin{equation*}
\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*} \quad \text { for } j=1,2, \ldots, d \tag{1}
\end{equation*}
$$

The uniqueness theorem for Cuntz algebras implies that one can define $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation ρ satisfying (1), In fact, if $\rho_{1}: L_{d} \rightarrow L(H)$ and $\rho_{2}: L_{d} \rightarrow L\left(H_{2}\right)$ are unital representations on Hilbert spaces satisfying (1), then there exists an isometric (*-)isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

$$
\begin{equation*}
\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*} \quad \text { for } j=1,2, \ldots, d \tag{1}
\end{equation*}
$$

The uniqueness theorem for Cuntz algebras implies that one can define $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation ρ satisfying (1), In fact, if $\rho_{1}: L_{d} \rightarrow L(H)$ and $\rho_{2}: L_{d} \rightarrow L\left(H_{2}\right)$ are unital representations on Hilbert spaces satisfying (1), then there exists an isometric (*-)isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Cuntz algebras

L_{d} is the Leavitt algebra, taken to be generated by $s_{1}, s_{2}, \ldots, s_{d}, t_{1}, t_{2}, \ldots, t_{d}$, in which the s_{j} play the role of the isometries and the t_{j} play the role of their adjoints.

Let H be an infinite dimensional Hilbert space. There are many representations $\rho: L_{d} \rightarrow L(H)$. The "good" ones are the representations ρ such that

$$
\begin{equation*}
\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*} \quad \text { for } j=1,2, \ldots, d \tag{1}
\end{equation*}
$$

The uniqueness theorem for Cuntz algebras implies that one can define $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation ρ satisfying (1), In fact, if $\rho_{1}: L_{d} \rightarrow L(H)$ and $\rho_{2}: L_{d} \rightarrow L\left(H_{2}\right)$ are unital representations on Hilbert spaces satisfying (1), then there exists an isometric (*-)isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

L^{p} analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of L_{d} will be taken to be unital.

Recall: $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation $\rho: L_{d} \rightarrow L(H)$ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

For $p \in[1, \infty) \backslash\{2\}$, we will take (definitions and justifications to follow) the algebra \mathcal{O}_{d}^{p} to be defined by $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ for a σ-finite measure space (X, \mathcal{B}, μ).

L^{p} analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of L_{d} will be taken to be unital.

Recall: $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation $\rho: L_{d} \rightarrow L(H)$ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

For $p \in[1, \infty) \backslash\{2\}$, we will take (definitions and justifications to follow) the algebra \mathcal{O}_{d}^{p} to be defined by $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ for a σ-finite measure space (X, \mathcal{B}, μ).

We will have to define spatial representations,

L^{p} analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of L_{d} will be taken to be unital.

Recall: $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation $\rho: L_{d} \rightarrow L(H)$ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

For $p \in[1, \infty) \backslash\{2\}$, we will take (definitions and justifications to follow) the algebra \mathcal{O}_{d}^{p} to be defined by $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ for a σ-finite measure space (X, \mathcal{B}, μ).

We will have to define spatial representations, and show that if $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ and $\rho: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ are spatial representations, then there exists an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

L^{p} analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of L_{d} will be taken to be unital.

Recall: $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation $\rho: L_{d} \rightarrow L(H)$ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

For $p \in[1, \infty) \backslash\{2\}$, we will take (definitions and justifications to follow) the algebra \mathcal{O}_{d}^{p} to be defined by $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ for a σ-finite measure space (X, \mathcal{B}, μ).

We will have to define spatial representations, and show that if $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ and $\rho: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ are spatial representations, then there exists an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

L^{p} analogs of Cuntz algebras

From now on (with very occasional exceptions), all representations of L_{d} will be taken to be unital.

Recall: $\mathcal{O}_{d}=\overline{\rho\left(L_{d}\right)}$ for any unital representation $\rho: L_{d} \rightarrow L(H)$ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

For $p \in[1, \infty) \backslash\{2\}$, we will take (definitions and justifications to follow) the algebra \mathcal{O}_{d}^{p} to be defined by $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ for a σ-finite measure space (X, \mathcal{B}, μ).

We will have to define spatial representations, and show that if $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ and $\rho: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ are spatial representations, then there exists an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(I_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{P}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{P}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Definition

Let (X, \mathcal{B}, μ) be a σ-finite measure space and let $p \in[1, \infty) \backslash\{2\}$. We define a representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial if:

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $I_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Definition

Let (X, \mathcal{B}, μ) be a σ-finite measure space and let $p \in[1, \infty) \backslash\{2\}$. We define a representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $l_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Definition

Let (X, \mathcal{B}, μ) be a σ-finite measure space and let $p \in[1, \infty) \backslash\{2\}$. We define a representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $l_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Definition

Let (X, \mathcal{B}, μ) be a σ-finite measure space and let $p \in[1, \infty) \backslash\{2\}$. We define a representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Towards a quick definition of \mathcal{O}_{d}^{p}

For any set S, give $I^{P}(S)$ the usual meaning (using counting measure on $S)$. Let $l_{d}^{p}=I^{p}(\{1,2, \ldots, d\})$. Let $M_{d}^{p}=L\left(l_{d}^{p}\right)$ with the usual operator norm, and algebraically identify M_{d}^{p} with M_{d} in the standard way.
We can replace counting measure on S by any strictly positive scalar multiple of counting measure, and still get the "same" space of operators on $I^{p}(S)$. We will suppress the distinction.

We have a canonical inclusion of M_{d} in L_{d} which sends the standard matrix unit $e_{j, k}$ to $s_{j} t_{k}$. For any representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$, we thus get a representation $\left.\rho\right|_{M_{d}}: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Definition

Let (X, \mathcal{B}, μ) be a σ-finite measure space and let $p \in[1, \infty) \backslash\{2\}$. We define a representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$. These are injective and have disjoint ranges whose union is $\mathbb{Z}_{>0}$.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$. These are injective and have disjoint ranges whose union is $\mathbb{Z}_{>0}$. Define $\rho\left(s_{j}\right), \rho\left(t_{j}\right) \in L\left(I^{P}\left(\mathbb{Z}_{>0}\right)\right)$ by, for $\xi=(\xi(1), \xi(2), \ldots) \in I^{p}$ and $n \in \mathbb{Z}_{>0}$,
$\left(\rho\left(s_{j}\right) \xi\right)(n)=\left\{\begin{array}{ll}\xi\left(f_{d, j}^{-1}(n)\right) & n \in \operatorname{ran}\left(f_{d, j}\right) \\ 0 & n \notin \operatorname{ran}\left(f_{d, j}\right)\end{array} \quad\right.$ and $\quad\left(\rho\left(t_{j}\right) \xi\right)(n)=\xi\left(f_{d, j}(n)\right)$.
If $d=2$, then
$\rho\left(s_{1}\right) \xi=(\xi(1), 0, \xi(2), 0, \xi(3), 0, \ldots) \quad$ and $\quad \rho\left(t_{1}\right) \xi=(\xi(1), \xi(3), \xi(5), \ldots)$.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$. These are injective and have disjoint ranges whose union is $\mathbb{Z}_{>0}$. Define $\rho\left(s_{j}\right), \rho\left(t_{j}\right) \in L\left(I^{P}\left(\mathbb{Z}_{>0}\right)\right)$ by, for $\xi=(\xi(1), \xi(2), \ldots) \in I^{P}$ and $n \in \mathbb{Z}_{>0}$,
$\left(\rho\left(s_{j}\right) \xi\right)(n)=\left\{\begin{array}{ll}\xi\left(f_{d, j}^{-1}(n)\right) & n \in \operatorname{ran}\left(f_{d, j}\right) \\ 0 & n \notin \operatorname{ran}\left(f_{d, j}\right)\end{array} \quad\right.$ and $\quad\left(\rho\left(t_{j}\right) \xi\right)(n)=\xi\left(f_{d, j}(n)\right)$.
If $d=2$, then
$\rho\left(s_{1}\right) \xi=(\xi(1), 0, \xi(2), 0, \xi(3), 0, \ldots) \quad$ and $\quad \rho\left(t_{1}\right) \xi=(\xi(1), \xi(3), \xi(5), \ldots)$. It is not hard to prove that this gives a spatial representation.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$. These are injective and have disjoint ranges whose union is $\mathbb{Z}_{>0}$. Define $\rho\left(s_{j}\right), \rho\left(t_{j}\right) \in L\left(I^{P}\left(\mathbb{Z}_{>0}\right)\right)$ by, for $\xi=(\xi(1), \xi(2), \ldots) \in I^{P}$ and $n \in \mathbb{Z}_{>0}$,
$\left(\rho\left(s_{j}\right) \xi\right)(n)=\left\{\begin{array}{ll}\xi\left(f_{d, j}^{-1}(n)\right) & n \in \operatorname{ran}\left(f_{d, j}\right) \\ 0 & n \notin \operatorname{ran}\left(f_{d, j}\right)\end{array} \quad\right.$ and $\quad\left(\rho\left(t_{j}\right) \xi\right)(n)=\xi\left(f_{d, j}(n)\right)$.
If $d=2$, then
$\rho\left(s_{1}\right) \xi=(\xi(1), 0, \xi(2), 0, \xi(3), 0, \ldots) \quad$ and $\quad \rho\left(t_{1}\right) \xi=(\xi(1), \xi(3), \xi(5), \ldots)$. It is not hard to prove that this gives a spatial representation.

Recall: the representation $\rho: L_{d} \rightarrow L\left(L^{P}(X, \mu)\right)$ is spatial if:

- $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for $j=1,2, \ldots, d$.
- As a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$, the representation $\left.\rho\right|_{M_{d}}$ is contractive.

Example

Define functions $f_{1}, f_{2}, \ldots, f_{d}: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by

$$
f_{j}(n)=d(n-1)+j
$$

for $n \in \mathbb{Z}_{>0}$. These are injective and have disjoint ranges whose union is $\mathbb{Z}_{>0}$. Define $\rho\left(s_{j}\right), \rho\left(t_{j}\right) \in L\left(I^{P}\left(\mathbb{Z}_{>0}\right)\right)$ by, for $\xi=(\xi(1), \xi(2), \ldots) \in I^{P}$ and $n \in \mathbb{Z}_{>0}$,
$\left(\rho\left(s_{j}\right) \xi\right)(n)=\left\{\begin{array}{ll}\xi\left(f_{d, j}^{-1}(n)\right) & n \in \operatorname{ran}\left(f_{d, j}\right) \\ 0 & n \notin \operatorname{ran}\left(f_{d, j}\right)\end{array} \quad\right.$ and $\quad\left(\rho\left(t_{j}\right) \xi\right)(n)=\xi\left(f_{d, j}(n)\right)$.
If $d=2$, then
$\rho\left(s_{1}\right) \xi=(\xi(1), 0, \xi(2), 0, \xi(3), 0, \ldots) \quad$ and $\quad \rho\left(t_{1}\right) \xi=(\xi(1), \xi(3), \xi(5), \ldots)$. It is not hard to prove that this gives a spatial representation.

Equivalent conditions for a representation to be spatial

 We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.Equivalent conditions for a representation to be spatial We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.

Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:

Equivalent conditions for a representation to be spatial We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.

Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.

Equivalent conditions for a representation to be spatial We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.

Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(2) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Equivalent conditions for a representation to be spatial

 We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.
Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(2) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(3) ρ is contractive as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.

Equivalent conditions for a representation to be spatial We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.

Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{\rho}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(3) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
0ρ is contractive as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(- $\left\|\rho\left(e_{j, k}\right)\right\| \leq 1$ for $j, k=1,2, \ldots, d$, and there is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, j}\right)$ is multiplication by χx_{j} for all j.

Equivalent conditions for a representation to be spatial

 We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.
Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(2) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(3) ρ is contractive as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(9) $\left\|\rho\left(e_{j, k}\right)\right\| \leq 1$ for $j, k=1,2, \ldots, d$, and there is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, j}\right)$ is multiplication by χX_{j} for all j.
(5) There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

Equivalent conditions for a representation to be spatial

 We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.
Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(2) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(3) ρ is contractive as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(9) $\left\|\rho\left(e_{j, k}\right)\right\| \leq 1$ for $j, k=1,2, \ldots, d$, and there is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, j}\right)$ is multiplication by χX_{j} for all j.
(5) There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

Equivalent conditions for a representation to be spatial

 We define below a "spatial partial isometry". Then the equivalent conditions in the following theorem define a spatial representation of M_{d}^{p}.
Theorem

Let $p \in[1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) $\rho\left(e_{j, k}\right)$ is a spatial partial isometry for $j, k=1,2, \ldots, d$.
(2) ρ is isometric as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(3) ρ is contractive as a map $M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$.
(9) $\left\|\rho\left(e_{j, k}\right)\right\| \leq 1$ for $j, k=1,2, \ldots, d$, and there is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, j}\right)$ is multiplication by χX_{j} for all j.
(5) There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on
$L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism
$L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on
$L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism
$L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial. Again, there are a number of them, suggesting that this is a natural class of representations.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial. Again, there are a number of them, suggesting that this is a natural class of representations. Again, spatial representations are quite rigid.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial. Again, there are a number of them, suggesting that this is a natural class of representations. Again, spatial representations are quite rigid. There are also about an equal number of equivalent conditions which we omit.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial. Again, there are a number of them, suggesting that this is a natural class of representations. Again, spatial representations are quite rigid. There are also about an equal number of equivalent conditions which we omit.

Spatial representations

The theorem on the previous page gave five equivalent conditions for a representation $\rho: M_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ to be spatial. Part of the intention is to make the case that this is a very natural class of representations to consider.

Spatial representations are quite rigid. This is shown in condition (5):
There is a partition $X=\coprod_{j=1}^{d} X_{j}$ such that $\rho\left(e_{j, k}\right)$ is zero on $L^{p}\left(X \backslash X_{k}, \mu\right)$ and is an isometric isomorphism $L^{p}\left(X_{k}, \mu\right) \rightarrow L^{p}\left(X_{j}, \mu\right)$ for all j, k.

The next theorem gives equivalent conditions for a representation of L_{d} to be spatial. Again, there are a number of them, suggesting that this is a natural class of representations. Again, spatial representations are quite rigid. There are also about an equal number of equivalent conditions which we omit.

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(9) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(4) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.
(5) $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry: it defines an isometry $L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(9) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.
(5) $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry: it defines an isometry $L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$.
(6) $\rho\left(s_{j}\right)$ is an isometry for all j and for $j=1,2, \ldots, d$ there is $X_{j} \subset X$ such that $\operatorname{ran}\left(\rho\left(s_{j}\right)\right)=L^{p}\left(X_{j}, \mu\right)$.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(9) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.
(5) $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry: it defines an isometry $L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$.
(6) $\rho\left(s_{j}\right)$ is an isometry for all j and for $j=1,2, \ldots, d$ there is $X_{j} \subset X$ such that $\operatorname{ran}\left(\rho\left(s_{j}\right)\right)=L^{p}\left(X_{j}, \mu\right)$.
(9) With $\frac{1}{p}+\frac{1}{q}=1$, the transpose representation ρ^{\prime} of L_{d} on $L^{q}(X, \mu)$, determined by $\rho^{\prime}\left(s_{j}\right)=\rho\left(t_{j}\right)^{\prime}$ and $\rho^{\prime}\left(t_{j}\right)=\rho\left(s_{j}\right)^{\prime}$ for all j, satisfies any of the conditions above.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(9) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.
(5) $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry: it defines an isometry $L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$.
(6) $\rho\left(s_{j}\right)$ is an isometry for all j and for $j=1,2, \ldots, d$ there is $X_{j} \subset X$ such that $\operatorname{ran}\left(\rho\left(s_{j}\right)\right)=L^{p}\left(X_{j}, \mu\right)$.
(9) With $\frac{1}{p}+\frac{1}{q}=1$, the transpose representation ρ^{\prime} of L_{d} on $L^{q}(X, \mu)$, determined by $\rho^{\prime}\left(s_{j}\right)=\rho\left(t_{j}\right)^{\prime}$ and $\rho^{\prime}\left(t_{j}\right)=\rho\left(s_{j}\right)^{\prime}$ for all j, satisfies any of the conditions above.

Theorem

Let $p \in(1, \infty) \backslash\{2\}$, let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a representation. Then the following are equivalent:
(1) ρ is spatial: $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is spatial.
(2) $\rho\left(s_{j}\right)$ is an isometry for all j and $\left.\rho\right|_{M_{d}}$ is spatial.
(3) $\rho\left(s_{j}\right)$ is a spatial partial isometry for all j.
(9) $\rho\left(t_{j}\right)$ is a spatial partial isometry for all j.
(5) $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry: it defines an isometry $L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$.
(6) $\rho\left(s_{j}\right)$ is an isometry for all j and for $j=1,2, \ldots, d$ there is $X_{j} \subset X$ such that $\operatorname{ran}\left(\rho\left(s_{j}\right)\right)=L^{p}\left(X_{j}, \mu\right)$.
(9) With $\frac{1}{p}+\frac{1}{q}=1$, the transpose representation ρ^{\prime} of L_{d} on $L^{q}(X, \mu)$, determined by $\rho^{\prime}\left(s_{j}\right)=\rho\left(t_{j}\right)^{\prime}$ and $\rho^{\prime}\left(t_{j}\right)=\rho\left(s_{j}\right)^{\prime}$ for all j, satisfies any of the conditions above.

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows:

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry,

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$.

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$. For $p=2$, this condition also characterizes the representations ρ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$. For $p=2$, this condition also characterizes the representations ρ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

Applying this condition to the transpose representation, we find, for example, that

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$. For $p=2$, this condition also characterizes the representations ρ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

Applying this condition to the transpose representation, we find, for example, that

$$
\left\|\sum_{j=1}^{d} \lambda_{j} \rho\left(t_{j}\right)\right\|=\|\lambda\|_{q} .
$$

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$. For $p=2$, this condition also characterizes the representations ρ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

Applying this condition to the transpose representation, we find, for example, that

$$
\left\|\sum_{j=1}^{d} \lambda_{j} \rho\left(t_{j}\right)\right\|=\|\lambda\|_{q} .
$$

Spatial representations of L_{d}

Recall the row isometry condition from the previous theorem:

$$
\begin{gathered}
\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right) \text { defines an isometry } \\
L^{p}(X, \mu) \oplus_{p} L^{p}(X, \mu) \oplus_{p} \cdots \oplus_{p} L^{p}(X, \mu) \rightarrow L^{p}(X, \mu) .
\end{gathered}
$$

We can rewrite this as follows: For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$, the operator

$$
\sum_{j=1}^{d} \lambda_{j} \rho\left(s_{j}\right)
$$

is a scalar multiple of an isometry, with the scalar being $\|\lambda\|_{p}$. For $p=2$, this condition also characterizes the representations ρ such that $\rho\left(t_{j}\right)=\rho\left(s_{j}\right)^{*}$ for $j=1,2, \ldots, d$.

Applying this condition to the transpose representation, we find, for example, that

$$
\left\|\sum_{j=1}^{d} \lambda_{j} \rho\left(t_{j}\right)\right\|=\|\lambda\|_{q} .
$$

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices":

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices" : let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices": let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.
(1) Let $f: X \rightarrow \mathbb{C}$ satisfy $|f|=1$ a.e. $[\mu]$. Then multiplication by f is an isometry on $L^{P}(X, \mu)$.

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices" : let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.
(1) Let $f: X \rightarrow \mathbb{C}$ satisfy $|f|=1$ a.e. $[\mu]$. Then multiplication by f is an isometry on $L^{p}(X, \mu)$.
(2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be measure spaces. Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that $\nu(h(E))=\mu(E)$ for all $E \subset X$.

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices" : let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.
(1) Let $f: X \rightarrow \mathbb{C}$ satisfy $|f|=1$ a.e. $[\mu]$. Then multiplication by f is an isometry on $L^{p}(X, \mu)$.
(2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be measure spaces. Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that $\nu(h(E))=\mu(E)$ for all $E \subset X$. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices" : let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.
(1) Let $f: X \rightarrow \mathbb{C}$ satisfy $|f|=1$ a.e. $[\mu]$. Then multiplication by f is an isometry on $L^{p}(X, \mu)$.
(2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be measure spaces. Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that $\nu(h(E))=\mu(E)$ for all $E \subset X$. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry?

For $p \in(0, \infty) \backslash\{2\}$, there are very few isometries on $L^{p}(X, \mu)$. For example, the only isometries on I_{d}^{p} are the "complex permutation matrices" : let σ be a permutation of $\{1,2, \ldots, d\}$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \in \mathbb{C}$ have absolute value 1 , and consider

$$
\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}
$$

Begin with some examples of isometries.
(1) Let $f: X \rightarrow \mathbb{C}$ satisfy $|f|=1$ a.e. $[\mu]$. Then multiplication by f is an isometry on $L^{p}(X, \mu)$.
(2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be measure spaces. Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that $\nu(h(E))=\mu(E)$ for all $E \subset X$. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry? (continued)

Examples of isometries (continued):
(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a measure preserving bijection. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

(3) (A modification of the preceding example.)

What is a spatial partial isometry? (continued)

Examples of isometries (continued):
(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a measure preserving bijection. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

(3) (A modification of the preceding example.) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ-finite measure spaces. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that for $E \subset X$ we have $\nu(h(E))=0$ if and only if $\mu(E)=0$.

What is a spatial partial isometry? (continued)

Examples of isometries (continued):
(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a measure preserving bijection. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

(3) (A modification of the preceding example.) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ-finite measure spaces. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that for $E \subset X$ we have $\nu(h(E))=0$ if and only if $\mu(E)=0$. Then define $v: L^{P}(X, \mu) \rightarrow L^{P}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\left(\left[\frac{d h_{*}(\mu)}{d \nu}\right](y)\right)^{1 / p} \xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry? (continued)

Examples of isometries (continued):
(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a measure preserving bijection. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

(3) (A modification of the preceding example.) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ-finite measure spaces. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that for $E \subset X$ we have $\nu(h(E))=0$ if and only if $\mu(E)=0$. Then define $v: L^{P}(X, \mu) \rightarrow L^{P}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\left(\left[\frac{d h_{*}(\mu)}{d \nu}\right](y)\right)^{1 / p} \xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry? (continued)

Examples of isometries (continued):
(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Let $Y_{0} \subset Y$. Let $h: X \rightarrow Y_{0}$ be a measure preserving bijection. Then define $v: L^{p}(X, \mu) \rightarrow L^{p}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

(3) (A modification of the preceding example.) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be σ-finite measure spaces. Let $h: X \rightarrow Y_{0}$ be a bimeasurable bijection such that for $E \subset X$ we have $\nu(h(E))=0$ if and only if $\mu(E)=0$. Then define $v: L^{P}(X, \mu) \rightarrow L^{P}(Y, \nu)$ by

$$
(v \xi)(y)= \begin{cases}\left(\left[\frac{d h_{*}(\mu)}{d \nu}\right](y)\right)^{1 / p} \xi\left(h^{-1}(y)\right) & y \in Y_{0} \\ 0 & y \notin Y_{0}\end{cases}
$$

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(9) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces.

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(9) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$.

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$,

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(9) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.
Lamperti's Theorem (1958) states that, roughly speaking, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are σ-finite and $p \neq 0,2, \infty$,

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.
Lamperti's Theorem (1958) states that, roughly speaking, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are σ-finite and $p \neq 0,2, \infty$, then every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a combination of isometries of these types.

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.
Lamperti's Theorem (1958) states that, roughly speaking, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are σ-finite and $p \neq 0,2, \infty$, then every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a combination of isometries of these types.
(One might need to make do with something a bit weaker than a point map in (2) and (3), and (4) is only a special case of something more general but following the same basic idea.)

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.
Lamperti's Theorem (1958) states that, roughly speaking, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are σ-finite and $p \neq 0,2, \infty$, then every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a combination of isometries of these types.
(One might need to make do with something a bit weaker than a point map in (2) and (3), and (4) is only a special case of something more general but following the same basic idea.)

What is a spatial partial isometry? (continued)

(1) As before: Multiplication by functions of absolute value 1 .
(2) As before: Composition with the inverse of a measure preserving bijection from X to a subset of Y.
(3) As before: Composition with the inverse of a measure class preserving bijection from X to a subset of Y, corrected by multiplying by a suitable power of a Radon-Nikodym derivative.
(1) Let (X, \mathcal{B}, μ) and $(Z, \mathcal{D}, \lambda)$ be σ-finite measure spaces. Set $(Y, \mathcal{C}, \nu)=(X, \mathcal{B}, \mu) \times(Z, \mathcal{D}, \lambda)$. Choose $\eta_{0} \in L^{p}(Z, \lambda)$ such that $\left\|\eta_{0}\right\|=1$, and consider the map $\xi \mapsto \xi \otimes \eta_{0}$ from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$.
Lamperti's Theorem (1958) states that, roughly speaking, if (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are σ-finite and $p \neq 0,2, \infty$, then every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a combination of isometries of these types.
(One might need to make do with something a bit weaker than a point map in (2) and (3), and (4) is only a special case of something more general but following the same basic idea.)

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{P}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{p}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur.

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{p}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur. A spatial partial isometry is a map $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ of the form multiplication by a characteristic function $\chi_{X_{0}}$ followed by a spatial isometry from $L^{p}\left(X_{0}, \mu\right)$ to $L^{p}(Y, \nu)$.

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{p}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur. A spatial partial isometry is a map $L^{p}(X, \mu)$ to $L^{P}(Y, \nu)$ of the form multiplication by a characteristic function $\chi_{X_{0}}$ followed by a spatial isometry from $L^{p}\left(X_{0}, \mu\right)$ to $L^{p}(Y, \nu)$.

Remark

A surjective isometry is necessarily spatial.

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{P}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur. A spatial partial isometry is a map $L^{p}(X, \mu)$ to $L^{P}(Y, \nu)$ of the form multiplication by a characteristic function $\chi_{X_{0}}$ followed by a spatial isometry from $L^{p}\left(X_{0}, \mu\right)$ to $L^{p}(Y, \nu)$.

Remark

A surjective isometry is necessarily spatial.

Remark

A spatial partial isometry s has a "reverse", which plays the role of s^{*} for a partial isometry on a Hilbert space.

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{P}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur. A spatial partial isometry is a map $L^{p}(X, \mu)$ to $L^{P}(Y, \nu)$ of the form multiplication by a characteristic function $\chi_{X_{0}}$ followed by a spatial isometry from $L^{p}\left(X_{0}, \mu\right)$ to $L^{p}(Y, \nu)$.

Remark

A surjective isometry is necessarily spatial.

Remark

A spatial partial isometry s has a "reverse", which plays the role of s^{*} for a partial isometry on a Hilbert space.

Lamperti: For $p \neq 0,2, \infty$, every isometry from $L^{p}(X, \mu)$ to $L^{p}(Y, \nu)$ is a composition, in this order, of operators almost of the following types:
(1) Use something close to a measure class preserving bijection to map from $L^{p}(X, \mu)$ to $L^{p}(Z, \lambda)$.
(2) Apply a generalization of $\xi \mapsto \xi \otimes \eta_{0}$ to map to $L^{p}\left(Y_{0}, \nu\right) \subset L^{P}(Y, \nu)$.
(3) Multiply by a function on Y_{0} of absolute value 1 .

Definition

An isometry is spatial if the second factor above does not occur. A spatial partial isometry is a map $L^{p}(X, \mu)$ to $L^{P}(Y, \nu)$ of the form multiplication by a characteristic function $\chi_{X_{0}}$ followed by a spatial isometry from $L^{p}\left(X_{0}, \mu\right)$ to $L^{p}(Y, \nu)$.

Remark

A surjective isometry is necessarily spatial.

Remark

A spatial partial isometry s has a "reverse", which plays the role of s^{*} for a partial isometry on a Hilbert space.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator. $t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries,

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator. $t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes)

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy. Therefore they are all the identity map,

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy. Therefore they are all the identity map, so $\rho\left(1-2 e_{j, j}\right)$ is a multiplication operator.

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy. Therefore they are all the identity map, so $\rho\left(1-2 e_{j, j}\right)$ is a multiplication operator.
Question: What happens if we use \mathbb{R} instead of \mathbb{C} ?

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy. Therefore they are all the identity map, so $\rho\left(1-2 e_{j, j}\right)$ is a multiplication operator.
Question: What happens if we use \mathbb{R} instead of \mathbb{C} ?

Equivalence of conditions for a representation to be spatial

We gave lists of equivalent conditions for a representation of M_{d} to be spatial, and for a representation of L_{d} to be spatial. Some of them involved the notion of a spatial partial isometry, and some didn't. For example:

- A contractive representation of M_{d}^{p} must be spatial.
- If ρ is a representation of L_{d} such that $\left(\rho\left(s_{1}\right) \rho\left(s_{2}\right) \cdots \rho\left(s_{d}\right)\right)$ is a row isometry, then $\rho\left(s_{j}\right)$ is a spatial isometry for all j.
- If ρ is a representation of L_{d} such that $\left\|\rho\left(s_{j}\right)\right\|,\left\|\rho\left(t_{j}\right)\right\| \leq 1$ for all j, and $\left.\rho\right|_{M_{d}}$ is contractive as a map on M_{d}^{p}, then $\rho\left(s_{j}\right)$ is spatial for all j.

The trickiest part is to prove that if ρ is a contractive representation of M_{d}^{p} on $L^{p}(X, \mu)$, then $\rho\left(e_{j, j}\right)$ is a multiplication operator.
$t \mapsto \rho\left(1-e_{j, j}+e^{i t} e_{j, j}\right)$ is a homotopy of isometries, spatial since they are surjective. One can check that the associated maps $X \rightarrow X$ (or, rather, slightly weaker substitutes) are constant along a homotopy. Therefore they are all the identity map, so $\rho\left(1-2 e_{j, j}\right)$ is a multiplication operator.
Question: What happens if we use \mathbb{R} instead of \mathbb{C} ?

Uniqueness and simplicity

Theorem (Uniqueness)

Let $p \in[1, \infty) \backslash\{2\}$, and let ρ_{1} and ρ_{2} be spatial representations on $L^{{ }^{p}}$-spaces (using σ-finite measures). Then there is an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Uniqueness and simplicity

Theorem (Uniqueness)

Let $p \in[1, \infty) \backslash\{2\}$, and let ρ_{1} and ρ_{2} be spatial representations on $L^{{ }^{p}}$-spaces (using σ-finite measures). Then there is an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Definition

We define $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation ρ of L^{d} on an L^{p} space (using a σ-finite measure).

Uniqueness and simplicity

Theorem (Uniqueness)

Let $p \in[1, \infty) \backslash\{2\}$, and let ρ_{1} and ρ_{2} be spatial representations on $L^{{ }^{p}}$-spaces (using σ-finite measures). Then there is an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Definition

We define $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation ρ of L^{d} on an L^{p} space (using a σ-finite measure).

Theorem (Simplicity)
Let $p \in[1, \infty) \backslash\{2\}$. Then \mathcal{O}_{d}^{p} is simple.

Uniqueness and simplicity

Theorem (Uniqueness)

Let $p \in[1, \infty) \backslash\{2\}$, and let ρ_{1} and ρ_{2} be spatial representations on $L^{{ }^{p}}$-spaces (using σ-finite measures). Then there is an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Definition

We define $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation ρ of L^{d} on an L^{p} space (using a σ-finite measure).

Theorem (Simplicity)
Let $p \in[1, \infty) \backslash\{2\}$. Then \mathcal{O}_{d}^{p} is simple.

Uniqueness and simplicity

Theorem (Uniqueness)

Let $p \in[1, \infty) \backslash\{2\}$, and let ρ_{1} and ρ_{2} be spatial representations on $L^{{ }^{p}}$-spaces (using σ-finite measures). Then there is an isometric isomorphism $\varphi: \overline{\rho_{1}\left(L_{d}\right)} \rightarrow \overline{\rho_{2}\left(L_{d}\right)}$ such that

$$
\varphi\left(\rho_{1}\left(s_{j}\right)\right)=\rho_{2}\left(s_{j}\right) \quad \text { and } \quad \varphi\left(\rho_{1}\left(t_{j}\right)\right)=\rho_{2}\left(t_{j}\right)
$$

for $j=1,2, \ldots, d$.

Definition

We define $\mathcal{O}_{d}^{p}=\overline{\rho\left(L_{d}\right)}$ for any spatial representation ρ of L^{d} on an L^{p} space (using a σ-finite measure).

Theorem (Simplicity)
Let $p \in[1, \infty) \backslash\{2\}$. Then \mathcal{O}_{d}^{p} is simple.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / I on an L^{p} space.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

The proof of simplicity is much like Cuntz's original proof.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

The proof of simplicity is much like Cuntz's original proof. The proof of uniqueness is completely different,

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

The proof of simplicity is much like Cuntz's original proof. The proof of uniqueness is completely different, and does not work for $p=2$.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

The proof of simplicity is much like Cuntz's original proof. The proof of uniqueness is completely different, and does not work for $p=2$.

About uniqueness and simplicity

For Cuntz algebras, the uniqueness and simplicity theorems are equivalent. For the analogs on L^{p} spaces, we seem to need entirely different proofs for them.

Suppose I is a closed ideal in \mathcal{O}_{d}^{p}. To get anything out of uniqueness, we need a representation of \mathcal{O}_{d}^{p} / l on an L^{p} space. The best known related theorem is for too weak; with $\frac{1}{p}+\frac{1}{q}=1$, it allows $L^{r}(Y, \nu)$ for any r between p and q (and other spaces besides).

Suppose we know that \mathcal{O}_{d}^{p} is simple, and we want to prove uniqueness. We at least need to know that every contractive representation on an L^{p} space is isometric. But there are simple operator algebras on L^{p} spaces with representations on L^{p} spaces which do not even have closed range.

The proof of simplicity is much like Cuntz's original proof. The proof of uniqueness is completely different, and does not work for $p=2$.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$. Use tensor product notation for operators on $L^{p}(Y, \nu)$, thought of as a suitable Banach space tensor product $L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})$.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$. Use tensor product notation for operators on $L^{p}(Y, \nu)$, thought of as a suitable Banach space tensor product $L^{P}(X, \mu) \otimes I^{P}(\mathbb{Z})$. Let $u \in L\left(I^{P}(\mathbb{Z})\right)$ be the bilateral shift.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$. Use tensor product notation for operators on $L^{p}(Y, \nu)$, thought of as a suitable Banach space tensor product $L^{P}(X, \mu) \otimes I^{P}(\mathbb{Z})$. Let $u \in L\left(I^{P}(\mathbb{Z})\right)$ be the bilateral shift. Then there is a representation $\sigma: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ such that

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

for $j=1,2, \ldots, d$. This representation is free.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$. Use tensor product notation for operators on $L^{p}(Y, \nu)$, thought of as a suitable Banach space tensor product $L^{P}(X, \mu) \otimes I^{P}(\mathbb{Z})$. Let $u \in L\left(I^{P}(\mathbb{Z})\right)$ be the bilateral shift. Then there is a representation $\sigma: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ such that

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

for $j=1,2, \ldots, d$. This representation is free.

Ideas of the proof of uniqueness

Fix $p \in[1, \infty) \backslash\{2\}$.

Definition

A representation $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is free if there is a partition $Y=\coprod_{m \in \mathbb{Z}} E_{m}$ such that for all $m \in \mathbb{Z}$ and all j, we have

$$
\sigma\left(s_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m+1}, \nu\right) \quad \text { and } \quad \sigma\left(t_{j}\right)\left(L^{p}\left(E_{m}, \nu\right)\right) \subset L^{p}\left(E_{m-1}, \nu\right)
$$

Let $\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ be a spatial representation. Let $Y=X \times \mathbb{Z}$, let λ be counting measure on \mathbb{Z}, and set $\nu=\mu \times \lambda$. Use tensor product notation for operators on $L^{p}(Y, \nu)$, thought of as a suitable Banach space tensor product $L^{P}(X, \mu) \otimes I^{P}(\mathbb{Z})$. Let $u \in L\left(I^{P}(\mathbb{Z})\right)$ be the bilateral shift. Then there is a representation $\sigma: L_{d} \rightarrow L\left(L^{p}(Y, \nu)\right)$ such that

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

for $j=1,2, \ldots, d$. This representation is free.

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$.

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$. Identify $L^{p}(Y, \nu)$ with $I^{p}\left(\mathbb{Z}, L^{p}(X, \mu)\right)$.

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$. Identify $L^{p}(Y, \nu)$ with $I^{P}\left(\mathbb{Z}, L^{p}(X, \mu)\right)$. By considering the action on elements of the form

$$
(\ldots, 0,0, \xi, \xi, \ldots, \xi, \xi, 0,0, \ldots)
$$

with a large number of occurrences of ξ,

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$. Identify $L^{p}(Y, \nu)$ with $I^{P}\left(\mathbb{Z}, L^{p}(X, \mu)\right)$. By considering the action on elements of the form

$$
(\ldots, 0,0, \xi, \xi, \ldots, \xi, \xi, 0,0, \ldots)
$$

with a large number of occurrences of ξ, one can show that $\|\sigma(a)\| \geq\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$. Identify $L^{p}(Y, \nu)$ with $I^{P}\left(\mathbb{Z}, L^{p}(X, \mu)\right)$. By considering the action on elements of the form

$$
(\ldots, 0,0, \xi, \xi, \ldots, \xi, \xi, 0,0, \ldots)
$$

with a large number of occurrences of ξ, one can show that $\|\sigma(a)\| \geq\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

$\rho: L_{d} \rightarrow L\left(L^{p}(X, \mu)\right)$ is a spatial representation,

$$
L^{p}(Y, \nu)=L^{p}(X \times \mathbb{Z}, \mu \times \lambda)=L^{p}(X, \mu) \otimes I^{p}(\mathbb{Z})
$$

and $\sigma: L_{d} \rightarrow L\left(L^{P}(Y, \nu)\right)$ is a free spatial representation determined by

$$
\sigma\left(s_{j}\right)=\rho\left(s_{j}\right) \otimes u \quad \text { and } \quad \sigma\left(t_{j}\right)=\rho\left(t_{j}\right) \otimes u^{-1}
$$

Let $a \in L_{d}$. Identify $L^{p}(Y, \nu)$ with $I^{P}\left(\mathbb{Z}, L^{p}(X, \mu)\right)$. By considering the action on elements of the form

$$
(\ldots, 0,0, \xi, \xi, \ldots, \xi, \xi, 0,0, \ldots)
$$

with a large number of occurrences of ξ, one can show that $\|\sigma(a)\| \geq\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.

Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)} .
$$

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)}
$$

A combinatorial argument can be used to show that for every $N \in \mathbb{Z}_{>0}$ there is $E \subset X$ with $\mu(E)>0$ such that the sets $h_{\alpha}(E)$, for all words α of length up to N, are disjoint.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)} .
$$

A combinatorial argument can be used to show that for every $N \in \mathbb{Z}_{>0}$ there is $E \subset X$ with $\mu(E)>0$ such that the sets $h_{\alpha}(E)$, for all words α of length up to N, are disjoint.

This is enough to be able to approximately reconstruct the free representation σ approximately as a subrepresentation of the representation $a \mapsto \rho(a) \otimes 1$ on $L^{p}(X \times Y, \mu \times \nu)$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)}
$$

A combinatorial argument can be used to show that for every $N \in \mathbb{Z}_{>0}$ there is $E \subset X$ with $\mu(E)>0$ such that the sets $h_{\alpha}(E)$, for all words α of length up to N, are disjoint.

This is enough to be able to approximately reconstruct the free representation σ approximately as a subrepresentation of the representation $a \mapsto \rho(a) \otimes 1$ on $L^{p}(X \times Y, \mu \times \nu)$. For $a \in L_{d}$, one then gets $\|\sigma(a)\| \leq\|\rho(a) \otimes 1\|=\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)}
$$

A combinatorial argument can be used to show that for every $N \in \mathbb{Z}_{>0}$ there is $E \subset X$ with $\mu(E)>0$ such that the sets $h_{\alpha}(E)$, for all words α of length up to N, are disjoint.

This is enough to be able to approximately reconstruct the free representation σ approximately as a subrepresentation of the representation $a \mapsto \rho(a) \otimes 1$ on $L^{p}(X \times Y, \mu \times \nu)$. For $a \in L_{d}$, one then gets $\|\sigma(a)\| \leq\|\rho(a) \otimes 1\|=\|\rho(a)\|$.

Ideas of the proof of uniqueness (continued)

Given a spatial representation ρ of L_{d}, we found a free spatial representation σ of L_{d} such that $\|\sigma(a)\| \geq\|\rho(a)\|$ for all $a \in L_{d}$.
Now suppose that ρ is any spatial representation and σ is any free spatial representation. We outline how to show that $\|\sigma(a)\| \leq\|\rho(a)\|$.
Suppose that the spatial isometries $\rho\left(s_{j}\right)$ are associated with measure class preserving bijections $h_{j}: X \rightarrow X_{j}$, with $X=\coprod_{j=1}^{d} X_{j}$. For any word $\alpha=(\alpha(1), \alpha(2), \ldots, \alpha(I))$ in $\{1,2, \ldots, d\}^{\prime}$, set

$$
h_{\alpha}=h_{\alpha(1)} \circ h_{\alpha(2)} \circ \cdots \circ h_{\alpha(I)}
$$

A combinatorial argument can be used to show that for every $N \in \mathbb{Z}_{>0}$ there is $E \subset X$ with $\mu(E)>0$ such that the sets $h_{\alpha}(E)$, for all words α of length up to N, are disjoint.

This is enough to be able to approximately reconstruct the free representation σ approximately as a subrepresentation of the representation $a \mapsto \rho(a) \otimes 1$ on $L^{p}(X \times Y, \mu \times \nu)$. For $a \in L_{d}$, one then gets $\|\sigma(a)\| \leq\|\rho(a) \otimes 1\|=\|\rho(a)\|$.

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core.

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$,

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$, but taking λ to be counting measure normalized to have total mass 1 . Then set $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$ with the infinite product measure μ,

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$, but taking λ to be counting measure normalized to have total mass 1 . Then set $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$ with the infinite product measure μ, represent $\bigotimes_{k=1}^{n} M_{d}^{p}$ on $L^{p}(X, \mu)$ by letting it act nontrivially on

$$
L^{p}\left(\{1,2, \ldots, d\}^{k}, \lambda \times \lambda \times \cdots \times \lambda\right)
$$

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$, but taking λ to be counting measure normalized to have total mass 1 . Then set $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$ with the infinite product measure μ, represent $\bigotimes_{k=1}^{n} M_{d}^{p}$ on $L^{p}(X, \mu)$ by letting it act nontrivially on

$$
L^{p}\left(\{1,2, \ldots, d\}^{k}, \lambda \times \lambda \times \cdots \times \lambda\right)
$$

and take the closure of the union over $n \in \mathbb{Z}_{>0}$ of the images of these.

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$, but taking λ to be counting measure normalized to have total mass 1 . Then set $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$ with the infinite product measure μ, represent $\bigotimes_{k=1}^{n} M_{d}^{p}$ on $L^{p}(X, \mu)$ by letting it act nontrivially on

$$
L^{p}\left(\{1,2, \ldots, d\}^{k}, \lambda \times \lambda \times \cdots \times \lambda\right)
$$

and take the closure of the union over $n \in \mathbb{Z}_{>0}$ of the images of these.

Idea of proof of simplicity

The proofs of simplicity and pure infiniteness are essentially the same as the original proofs of Cuntz, except that one must check many more things because, for example, injective homomorphisms need not be isometric or even have closed range.

We need simplicity of the analog of the UHF core. Here we need to do more work: it is probably not true that the direct limit of simple L^{p} operator algebras is simple.

The construction is to represent M_{d}^{p} on $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\}, \lambda)$, but taking λ to be counting measure normalized to have total mass 1 . Then set $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$ with the infinite product measure μ, represent $\bigotimes_{k=1}^{n} M_{d}^{p}$ on $L^{p}(X, \mu)$ by letting it act nontrivially on

$$
L^{p}\left(\{1,2, \ldots, d\}^{k}, \lambda \times \lambda \times \cdots \times \lambda\right)
$$

and take the closure of the union over $n \in \mathbb{Z}_{>0}$ of the images of these.

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.

We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} I_{d}^{p}
$$

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} l_{d}^{p}
$$

Then we get an obvious representation $\sigma_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}\left(X_{n}, \mu_{n}\right)\right)$.

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} I_{d}^{p}
$$

Then we get an obvious representation $\sigma_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}\left(X_{n}, \mu_{n}\right)\right)$. Define $\rho_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$ by $\rho_{n}(a)=\sigma_{n}(a) \otimes 1$.

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} I_{d}^{p}
$$

Then we get an obvious representation $\sigma_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}\left(X_{n}, \mu_{n}\right)\right)$. Define $\rho_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$ by $\rho_{n}(a)=\sigma_{n}(a) \otimes 1$. Set

$$
D_{n}=\rho_{n}\left(\bigotimes_{k=1}^{n} M_{d}^{p}\right) \quad \text { and } \quad D=\bigcup_{n=0}^{\infty} D_{n} .
$$

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} I_{d}^{p}
$$

Then we get an obvious representation $\sigma_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}\left(X_{n}, \mu_{n}\right)\right)$. Define $\rho_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$ by $\rho_{n}(a)=\sigma_{n}(a) \otimes 1$. Set

$$
D_{n}=\rho_{n}\left(\bigotimes_{k=1}^{n} M_{d}^{p}\right) \quad \text { and } \quad D=\bigcup_{n=0}^{\infty} D_{n} .
$$

Analogs of UHF algebras on L^{p} spaces

Recall: λ is normalized counting measure, $I_{d}^{p}=L^{p}(\{1,2, \ldots, d\} \lambda)$, $X=\{1,2, \ldots, d\}^{\mathbb{Z}_{>0}}$, and μ is the infinite product of copies of λ.
We write $X=X_{n} \times Y_{n}$ with

$$
X_{n}=\prod_{k=1}^{n}\{1,2, \ldots, d\}=\{1,2, \ldots, d\}^{n} \quad \text { and } \quad Y_{n}=\prod_{k=n+1}^{\infty}\{1,2, \ldots, d\}
$$

with product measures μ_{n} and ν_{n}.
We get (using a suitable Banach space tensor product)

$$
L^{p}(X, \mu)=L^{p}\left(X_{n}, \mu_{n}\right) \otimes_{p} L^{p}\left(Y_{n}, \nu_{n}\right) \quad \text { and } \quad L^{p}\left(X_{n}, \mu_{n}\right)=\bigotimes_{k=1}^{n} I_{d}^{p}
$$

Then we get an obvious representation $\sigma_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}\left(X_{n}, \mu_{n}\right)\right)$. Define $\rho_{n}: \bigotimes_{k=1}^{n} M_{d}^{p} \rightarrow L\left(L^{p}(X, \mu)\right)$ by $\rho_{n}(a)=\sigma_{n}(a) \otimes 1$. Set

$$
D_{n}=\rho_{n}\left(\bigotimes_{k=1}^{n} M_{d}^{p}\right) \quad \text { and } \quad D=\bigcup_{n=0}^{\infty} D_{n} .
$$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$,

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$, spanned by

$$
\left\{a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}: a_{k} \in M_{d}^{p} \text { for all } k \text { and } a_{k}=1 \text { for } k \notin S\right\} .
$$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$, spanned by

$$
\left\{a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}: a_{k} \in M_{d}^{p} \text { for all } k \text { and } a_{k}=1 \text { for } k \notin S\right\} .
$$

For general $S \subset \mathbb{Z}_{>0}$, we take $D_{S} \subset D$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$, spanned by

$$
\left\{a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}: a_{k} \in M_{d}^{p} \text { for all } k \text { and } a_{k}=1 \text { for } k \notin S\right\} .
$$

For general $S \subset \mathbb{Z}_{>0}$, we take $D_{S} \subset D$ to be

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}
$$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$, spanned by

$$
\left\{a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}: a_{k} \in M_{d}^{p} \text { for all } k \text { and } a_{k}=1 \text { for } k \notin S\right\} .
$$

For general $S \subset \mathbb{Z}_{>0}$, we take $D_{S} \subset D$ to be

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}
$$

Simplicity of L^{p} UHF algebras

Recall (abusing notation):

$$
D=\bigcup_{n=0}^{\infty} \bigotimes_{k=1}^{n} M_{d}^{p}=\bigotimes_{k=1}^{\infty} M_{d}^{p}
$$

Let $S \subset \mathbb{Z}_{>0}$. If $S \subset\{1,2, \ldots, n\}$, then we can interpret $\bigotimes_{k \in S} M_{d}^{p}$ as a subalgebra of $\bigotimes_{k=1}^{n} M_{d}^{p}$, spanned by

$$
\left\{a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}: a_{k} \in M_{d}^{p} \text { for all } k \text { and } a_{k}=1 \text { for } k \notin S\right\} .
$$

For general $S \subset \mathbb{Z}_{>0}$, we take $D_{S} \subset D$ to be

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}
$$

Simplicity of L^{p} UHF algebras: conditional expectations Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,

$$
D_{S}=\bigcup_{n=0} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p} .
$$

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices,

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is, $\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is, $\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$

Let tr be the normalized trace.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S_{n}\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p} .
$$

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is,
$\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$
Let tr be the normalized trace. Then

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} g a g^{-1}=\operatorname{tr}(a) \cdot 1
$$

for all $a \in M_{d}^{p}$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p} .
$$

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is,
$\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$
Let tr be the normalized trace. Then

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} g a g^{-1}=\operatorname{tr}(a) \cdot 1
$$

for all $a \in M_{d}^{p}$. Since the elements of G are isometries, this formula defines a contractive Banach algebra conditional expectation $M_{d}^{p} \rightarrow \mathbb{C} \cdot 1$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p} .
$$

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is,
$\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$
Let tr be the normalized trace. Then

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} g a g^{-1}=\operatorname{tr}(a) \cdot 1
$$

for all $a \in M_{d}^{p}$. Since the elements of G are isometries, this formula defines a contractive Banach algebra conditional expectation $M_{d}^{p} \rightarrow \mathbb{C} \cdot 1$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall (abusing notation): For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p} .
$$

Let $G \subset M_{d}^{p}$ be the group of signed permutation matrices, that is,
$\left\{\sum_{j=1}^{d} \lambda_{j} e_{j, \sigma(j)}: \sigma\right.$ is a permutation of $\{1, \ldots, d\}$ and $\lambda_{j} \in\{1,-1\}$ for all $\left.j\right\}$
Let tr be the normalized trace. Then

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} g a g^{-1}=\operatorname{tr}(a) \cdot 1
$$

for all $a \in M_{d}^{p}$. Since the elements of G are isometries, this formula defines a contractive Banach algebra conditional expectation $M_{d}^{p} \rightarrow \mathbb{C} \cdot 1$.

Simplicity of L^{p} UHF algebras: conditional expectations Recall: For $S \subset \mathbb{Z}_{>0}$,

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$.

Simplicity of L^{p} UHF algebras: conditional expectations Recall: For $S \subset \mathbb{Z}_{>0}$,

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$,

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

We have $E_{T, S}$ when $T \backslash S$ is finite.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

We have $E_{T, S}$ when $T \backslash S$ is finite. By taking limits, we also define $E_{T, S}$ for arbitrary subsets with $S \subset T \subset \mathbb{Z}_{>0}$.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

We have $E_{T, S}$ when $T \backslash S$ is finite. By taking limits, we also define $E_{T, S}$ for arbitrary subsets with $S \subset T \subset \mathbb{Z}_{>0}$. These are still contractive Banach algebra conditional expectations which preserve closed ideals.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

We have $E_{T, S}$ when $T \backslash S$ is finite. By taking limits, we also define $E_{T, S}$ for arbitrary subsets with $S \subset T \subset \mathbb{Z}_{>0}$. These are still contractive Banach algebra conditional expectations which preserve closed ideals.

Simplicity of L^{p} UHF algebras: conditional expectations

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

$G \subset M_{d}^{p}$ is the group of signed permutation matrices, and

$$
\frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{gag}^{-1}=\operatorname{tr}(a) \cdot 1
$$

Suppose $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z} \backslash S$ are distinct, and $T=S \cup\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. By averaging this way in each of $D_{k_{1}}, D_{k_{2}}, \ldots, D_{k_{r}}$, we get a contractive Banach algebra conditional expectation $E_{T, S}: D_{T} \rightarrow D_{S}$. It preserves ideals: If $I \subset D_{T}$ is an ideal, then $E_{T, S}(I) \subset I \cap D_{S}$.

We have $E_{T, S}$ when $T \backslash S$ is finite. By taking limits, we also define $E_{T, S}$ for arbitrary subsets with $S \subset T \subset \mathbb{Z}_{>0}$. These are still contractive Banach algebra conditional expectations which preserve closed ideals.

Simplicity of L^{p} UHF algebras: end of the proof Recall: For $S \subset \mathbb{Z}_{>0}$,

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p},
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$.

Simplicity of L^{p} UHF algebras: end of the proof Recall: For $S \subset \mathbb{Z}_{>0}$,

$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p},
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a .
$$

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$.

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}>0},\{1,2, \ldots, n\}(a)$

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)$ is a nonzero element

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)$ is a nonzero element of $I \cap \bigotimes_{k=1}^{n} M_{d}^{p}$.

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)$ is a nonzero element of $I \cap \bigotimes_{k=1}^{n} M_{d}^{p}$. Since $\bigotimes_{k=1}^{n} M_{d}^{p}$ is simple, $1 \in I$, so $I=D$.

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)$ is a nonzero element of $I \cap \bigotimes_{k=1}^{n} M_{d}^{p}$. Since $\bigotimes_{k=1}^{n} M_{d}^{p}$ is simple, $1 \in I$, so $I=D$.

Simplicity of L^{p} UHF algebras: end of the proof

 Recall: For $S \subset \mathbb{Z}_{>0}$,$$
D_{S}=\bigcup_{n=0}^{\infty} \bigotimes_{k \in S \cap\{1,2, \ldots, n\}} M_{d}^{p}=\bigotimes_{k \in S} M_{d}^{p}
$$

and we have closed ideal preserving Banach algebra conditional expectations $E_{T, S}: D_{T} \rightarrow D_{S}$ for $S \subset T$. In particular,

$$
E_{\mathbb{Z}>0,\{1,2, \ldots, n\}}: D \rightarrow D_{n}=\bigotimes_{k=1}^{n} M_{d}^{p}
$$

One can check that for $a \in D=D_{\mathbb{Z}_{>0}}$, we have

$$
\lim _{n \rightarrow \infty} E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)=a
$$

Now let $I \subset D$ be a nonzero closed ideal. Choose $a \in I$ with $a \neq 0$. Then there is n such that $E_{\mathbb{Z}_{>0},\{1,2, \ldots, n\}}(a)$ is a nonzero element of $I \cap \bigotimes_{k=1}^{n} M_{d}^{p}$. Since $\bigotimes_{k=1}^{n} M_{d}^{p}$ is simple, $1 \in I$, so $I=D$.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.
Spatial L ${ }^{p}$ UHF algebras: the general case

The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.

We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation.

Spatial L ${ }^{p}$ UHF algebras: the general case

The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.

We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem
For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.
- Has the property that every contractive unital representation on an L^{p} space is isometric.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.
- Has the property that every contractive unital representation on an L^{p} space is isometric.

Also, for different values of p, in at least one direction there are no nonzero continuous homomorphisms.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.
- Has the property that every contractive unital representation on an L^{p} space is isometric.

Also, for different values of p, in at least one direction there are no nonzero continuous homomorphisms. So they can't be isomorphic.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.
- Has the property that every contractive unital representation on an L^{p} space is isometric.

Also, for different values of p, in at least one direction there are no nonzero continuous homomorphisms. So they can't be isomorphic.

Spatial L ${ }^{p}$ UHF algebras: the general case

 The algebra $D=\bigotimes_{k=1}^{\infty} M_{d}^{p}$ we considered is "spatial", because we made it using spatial representations of M_{d}^{p}.We considered the UHF algebra of type d^{∞} because it is the one needed for simplicity of \mathcal{O}_{d}^{p}, and to simplify notation. We get a spatial L^{p} UHF algebra for every supernatural number N.

Theorem

For every supernatural number N and every $p \in[1, \infty)$, the L^{p} UHF algebra with supernatural number N :

- Is simple with unique continuous normalized trace.
- Has the expected ordered topological K-theory.
- Has the property that every contractive unital representation on an L^{p} space is isometric.

Also, for different values of p, in at least one direction there are no nonzero continuous homomorphisms. So they can't be isomorphic.

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on I_{d}^{p}.

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group,

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$,

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

If we take S to consist of diagonal matrices, then $\left\|\rho_{S}\left(e_{j, j}\right)\right\|=1$ for all j.
Consider infinite tensor products of matrix algebras $M_{d_{n}}$ using subsets S_{n} of the diagonal matrices in $M_{d_{n}}$.

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

If we take S to consist of diagonal matrices, then $\left\|\rho_{S}\left(e_{j, j}\right)\right\|=1$ for all j.
Consider infinite tensor products of matrix algebras $M_{d_{n}}$ using subsets S_{n} of the diagonal matrices in $M_{d_{n}}$. Then I think I can show:

- For fixed p and supernatural number N, there are uncountably many isomorphism classes of these. (Isomorphism need not be isometric.)

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

If we take S to consist of diagonal matrices, then $\left\|\rho_{S}\left(e_{j, j}\right)\right\|=1$ for all j.
Consider infinite tensor products of matrix algebras $M_{d_{n}}$ using subsets S_{n} of the diagonal matrices in $M_{d_{n}}$. Then I think I can show:

- For fixed p and supernatural number N, there are uncountably many isomorphism classes of these. (Isomorphism need not be isometric.)
- The algebra is isomorphic to the spatial one if and only if it is amenable in the sense of Banach algebras.

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

If we take S to consist of diagonal matrices, then $\left\|\rho_{S}\left(e_{j, j}\right)\right\|=1$ for all j.
Consider infinite tensor products of matrix algebras $M_{d_{n}}$ using subsets S_{n} of the diagonal matrices in $M_{d_{n}}$. Then I think I can show:

- For fixed p and supernatural number N, there are uncountably many isomorphism classes of these. (Isomorphism need not be isometric.)
- The algebra is isomorphic to the spatial one if and only if it is amenable in the sense of Banach algebras.

Nonspatial L^{p} UHF algebras

One can consider representations of M_{d}^{p} on L^{p} spaces more general than the identity representation on l_{d}^{p}. For example, if $S \subset M_{d}^{p}$ is countable and its closure is a compact subset of the invertible group, consider $X=\coprod_{v \in S}\{1,2, \ldots, d\}$, with a measure μ normalized to make $\mu(X)=1$, and take

$$
\rho_{S}(a)=\bigoplus_{v \in S} v a v^{-1}
$$

If we take S to consist of diagonal matrices, then $\left\|\rho_{S}\left(e_{j, j}\right)\right\|=1$ for all j.
Consider infinite tensor products of matrix algebras $M_{d_{n}}$ using subsets S_{n} of the diagonal matrices in $M_{d_{n}}$. Then I think I can show:

- For fixed p and supernatural number N, there are uncountably many isomorphism classes of these. (Isomorphism need not be isometric.)
- The algebra is isomorphic to the spatial one if and only if it is amenable in the sense of Banach algebras.

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}.

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method.

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{P}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$.

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{r}^{P}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{P}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{P}(G, A, \alpha)$. We know very little about the map $F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$,

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the $\operatorname{map} F^{p}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the $\operatorname{map} F^{p}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the map $F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}.

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the $\operatorname{map} F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C* case,

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the $\operatorname{map} F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C^{*} case, such that

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the $\operatorname{map} F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C^{*} case, such that

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

(We have $\overline{M_{\infty}}=K\left(I^{p}\right)$ for $p \in(1, \infty)$, but not for $p=1$.)

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the map $F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C* case, such that

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

(We have $\overline{M_{\infty}}=K\left(I^{p}\right)$ for $p \in(1, \infty)$, but not for $p=1$.) Many details, automatic in the C^{*} case, must be explicitly checked.

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the map $F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C* case, such that

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

(We have $\overline{M_{\infty}}=K\left(I^{p}\right)$ for $p \in(1, \infty)$, but not for $p=1$.) Many details, automatic in the C^{*} case, must be explicitly checked.

L^{p} operator crossed products

Cuntz's original calculation of the K-theory seems not to work for \mathcal{O}_{d}^{p}. Instead, we adapt the crossed product method. Thus, we define reduced crossed products $F_{\mathrm{r}}^{p}(G, A, \alpha)$ for isometric actions α of a second countable locally compact group on a closed subalgebra $A \subset L\left(L^{p}(X, \mu)\right.$) (with μ σ-finite).
(There are also full crossed products $F^{p}(G, A, \alpha)$. We know very little about the map $F^{P}(G, A, \alpha) \rightarrow F_{\mathrm{r}}^{P}(G, A, \alpha)$, but it seems much less likely to be an isomorphism than in the C^{*} case.)
(We make some use of the general theory of Dirksen, de Jeu, and Wortel.)
Let D be the spatial L^{p} UHF algebra of type d^{∞}. We construct an action α of \mathbb{Z} on $\overline{M_{\infty}} \otimes_{p} D$, essentially the same as in the C* case, such that

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

(We have $\overline{M_{\infty}}=K\left(I^{p}\right)$ for $p \in(1, \infty)$, but not for $p=1$.) Many details, automatic in the C^{*} case, must be explicitly checked.

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p} .
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}.

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}. (Use closure under holomorphic functional calculus to reduce to a smooth version, and apply an old joint paper with Schweitzer.)

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}. (Use closure under holomorphic functional calculus to reduce to a smooth version, and apply an old joint paper with Schweitzer.)

One gets, as for C^{*}-algebras, $K_{1}\left(\mathcal{O}_{d}^{p}\right)=0$

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}. (Use closure under holomorphic functional calculus to reduce to a smooth version, and apply an old joint paper with Schweitzer.)

One gets, as for C^{*}-algebras, $K_{1}\left(\mathcal{O}_{d}^{p}\right)=0$ and an isomorphism $K_{0}\left(\mathcal{O}_{d}^{p}\right) \rightarrow \mathbb{Z} /(d-1) \mathbb{Z}$ which sends $[1] \in K_{0}\left(\mathcal{O}_{d}^{p}\right)$ to the standard generator $1+(d-1) \mathbb{Z}$.

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}. (Use closure under holomorphic functional calculus to reduce to a smooth version, and apply an old joint paper with Schweitzer.)

One gets, as for C^{*}-algebras, $K_{1}\left(\mathcal{O}_{d}^{p}\right)=0$ and an isomorphism $K_{0}\left(\mathcal{O}_{d}^{p}\right) \rightarrow \mathbb{Z} /(d-1) \mathbb{Z}$ which sends $[1] \in K_{0}\left(\mathcal{O}_{d}^{p}\right)$ to the standard generator $1+(d-1) \mathbb{Z}$.

K-theory of \mathcal{O}_{d}^{p}

We had

$$
F_{\mathrm{r}}^{p}(\mathbb{Z}, D, \alpha) \cong \overline{M_{\infty}} \otimes_{p} \mathcal{O}_{d}^{p}
$$

There is a Pismner-Voiculescu exact sequence for the K-theory of reduced L^{p} operator crossed products by \mathbb{Z}. (Use closure under holomorphic functional calculus to reduce to a smooth version, and apply an old joint paper with Schweitzer.)

One gets, as for C^{*}-algebras, $K_{1}\left(\mathcal{O}_{d}^{p}\right)=0$ and an isomorphism $K_{0}\left(\mathcal{O}_{d}^{p}\right) \rightarrow \mathbb{Z} /(d-1) \mathbb{Z}$ which sends $[1] \in K_{0}\left(\mathcal{O}_{d}^{p}\right)$ to the standard generator $1+(d-1) \mathbb{Z}$.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem
Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

In the C* case, essential freeness is enough. We don't know whether this is true in general.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

In the C* case, essential freeness is enough. We don't know whether this is true in general.

Theorem (Sanaz Pooya)

For $p \in(1, \infty)$, the reduced L^{p} group algebra of a countable nonabelian free group is simple.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

In the C* case, essential freeness is enough. We don't know whether this is true in general.

Theorem (Sanaz Pooya)

For $p \in(1, \infty)$, the reduced L^{p} group algebra of a countable nonabelian free group is simple.

In the C* case, this was done by Powers. It isn't true for $p=1$.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

In the C* case, essential freeness is enough. We don't know whether this is true in general.

Theorem (Sanaz Pooya)

For $p \in(1, \infty)$, the reduced L^{p} group algebra of a countable nonabelian free group is simple.

In the C* case, this was done by Powers. It isn't true for $p=1$.

L^{p} operator crossed products

There are many things to do with L^{p} operator crossed products. Here are two initial results.

Theorem

Let G be a countable discrete group which acts freely and minimally on a compact metric space X. Then $F_{\mathrm{r}}^{P}(G, C(X))$ is simple.

In the C* case, essential freeness is enough. We don't know whether this is true in general.

Theorem (Sanaz Pooya)

For $p \in(1, \infty)$, the reduced L^{p} group algebra of a countable nonabelian free group is simple.

In the C* case, this was done by Powers. It isn't true for $p=1$.

