Exam 2

The following are due at the beginning of class on Friday, October 31.

Problem 1: (20 points) Let H be a Hilbert space. Prove that if $T \in \mathcal{K}(H)$, then either $\operatorname{rank} T<\infty$ or $\operatorname{Ran}(T)$ is not closed.

Problem 2: If V is a vector space over \mathbb{C}, then a vector space partial order on V is a relation \leq satisfying the following:
(i) $x \leq x$ for all $x \in V$.
(ii) If $x, y \in V$ with $x \leq y$ and $y \leq x$, then $x=y$.
(iii) If $x, y, z \in V$ with $x \leq y$ and $y \leq z$, then $x \leq z$.
(iv) If $x, y \in V$ and $x \leq y$, then $x+z \leq y+z$ for all $z \in V$.
(v) If $x, y \in V$ and $x \leq y$, then $r x \leq r y$ for all $r \in[0, \infty)$.

Note that properties $(i)-(i i)$ simply say that \leq is a partial order, and properties $(i v)-(v)$ require that partial order to interact appropriately with the addition and scalar multiplication on V.
If V is a vector space over \mathbb{C}, a cone in V is a subset $C \subseteq V$ satisfying:
(I) If $x, y \in C$, then $x+y \in C$.
(II) If $x \in C$ and $r \in[0, \infty)$, then $r x \in C$.
(III) $C \cap-C=\{0\}$.
(a) (10 points) Prove that if \leq is a vector space partial order, then $C:=$ $\{x \in V: x \geq 0\}$ is a cone.
(b) (10 points) Prove that if C is a cone, and if we define a relation \leq on V by $x \leq y$ if and only if $y-x \in C$, then \leq is a vector space partial order on V.
(c) (20 points) Let H be a Hilbert space. Prove that the positive operators in $B(H)$ form a cone. Conclude that we may define a vector space partial ordering on $B(H)$ by: $S \leq T$ if and only if $T-S$ is a positive operator.
(d) (10 points) We already defined a partial ordering \leq_{p} on the projections as follows: If P, Q are projections on H, then $P \leq_{p} Q$ if and only if $Q P=P$. Prove that this partial ordering on the projections coincides with the partial ordering provided by the positive operators in $B(H)$; that is, prove that if Q and P are projections, then $P \leq_{p} Q$ if and only if $P \leq Q$. (Feel free to use any results we proved in class.)

Problem 3: If $T: H \rightarrow H$ is linear (but not necessarily bounded), we say that T is orthogonally diagonalizable if there exists an orthonormal basis $\left\{e_{i}\right\}_{i \in I}$ such that for each $i \in I$ we have $T\left(e_{i}\right)=\lambda_{i} e_{i}$ for some $\lambda_{i} \in \mathbb{C}$.

Suppose that H is a separable infinite-dimensional Hilbert space, that T is orthogonally diagonalizable, and that $\left\{e_{i}\right\}_{i=1}^{\infty}$ is a countably infinite orthonormal basis for H with $T\left(e_{i}\right)=\lambda_{i} e_{i}$ for $i \in \mathbb{N}$. Note that with this choice of basis, we may identify H with $\ell^{2}(\mathbb{N})$ and we may identify T with the diagonal infinite matrix indexed by \mathbb{N} whose diagonal entries are $\lambda_{1}, \lambda_{2}, \ldots$.
(a) (10 points) Prove that T is a bounded operator if and only if $\lambda_{1}, \lambda_{2}, \ldots$ is a bounded sequence.
(b) (10 points) Prove that T is a compact operator if and only if the sequence $\lambda_{1}, \lambda_{2}, \ldots$ has the property that $\lim _{n \rightarrow \infty} \lambda_{n}=0$.
(c) (10 points) Prove that T is a finite-rank operator if and only if the sequence $\lambda_{1}, \lambda_{2}, \ldots$ has only a finite number of nonzero terms.

Note that if we identify the orthogonally diagonalizable on H with the sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of eigenvalues (equivalently, diagonal entries), then the bounded operators correspond to $\ell^{\infty}:=L^{\infty}(\mathbb{N})$, the compact operators correspond to $c_{0}:=C_{0}(\mathbb{N})$, and the finite-rank operators correspond to $c_{00}:=C_{c}(\mathbb{N})$.

