Math 7320 — Final Exam

The following are due in my mailbox at Noon on Monday, Dec. 15.

Problem 1: If A is a unital C^{*}-algebra, an element $a \in A$ is *positive* if a is self-adjoint and $\sigma(a) \subseteq [0, \infty)$.

- (i) (10 points) Prove that if $a \in A$ is self-adjoint, then there exist positive elements $a_+, a_- \in A$ such that $a = a_+ a_-$ and $a_+a_- = a_-a_+ = 0$.
- (ii) (5 points) Prove that the positive elements a_+ and a_- described in part (i) are unique.
- (iii) (10 points) If $a \in A$ is self-adjoint, define $|a| := (a^2)^{1/2}$. Prove that $|a| = a_+ + a_-$.
- (iv) (5 points) Prove that every element of a C^* -algebra is a linear combination of four positive elements.

Problem 2: (30 points) Let A be a unital C^* -algebra. Prove that for any $a \in A$ the following three conditions are equivalent.

- (a) a is positive.
- (b) $a = b^2$ for some self-adjoint element $b \in A$.
- (c) $a = x^*x$ for some $x \in A$.

Problem 3: (20 points) Prove that if A and B are unital C^* -algebras and $h : A \to B$ is a *-homomorphism with h(1) = 1, then $||h(a)|| \le ||a||$ for all $a \in A$. Also prove that im h is closed, and that h is isometric (i.e., ||h(a)|| = ||a||) if and only if h is injective.

Problem 4: Let A be a unital C^* -algebra, let I be a proper (closed, twosided) ideal in A, and let $a \in I$ be self-adjoint.

- (a) (5 points) Prove that $0 \in \sigma(a)$.
- (b) (15 points) Prove that if $f : \sigma(a) \to \mathbb{C}$ is a continuous function with f(0) = 0, then $f(a) \in I$.