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“Generalizations without details are hollow, but details without
generalizations are barren.”

The Cuntz-Pimsner algebras provide a vast generalization of graph
C ∗-algebras, in which some — but not all — of the graph C ∗-algebra
results extend.

As with all generalizations there is a balance to be struck between finding
classes of C ∗-algebras that are large enough to contain many examples,
and yet specific enough that useful theorems can be proven. And, as
always, the more objects we try to talk about at once, the less we can say
about them.

It’s often useful to consider subclasses of Cuntz-Pimsner algebras that
generalize (i.e., include most of) the graph C ∗-algebras, in the hopes that
more graph C ∗-algebra theorems will generalize to this setting.

Mark Tomforde (University of Houston) Generalizations of Graph Algebras July, 2010 2 / 34



We will give a survey of some generalizations of graph algebras. For each
class we will:

1 define the basic objects that will be used in place of directed graphs,
and discuss how a C ∗-algebra can be constructed from such an object,

2 explain how graph algebras are special cases of these C ∗-algebras, and

3 compare and contrast the theory for these C ∗-algebras to the theory
for graph C ∗-algebras.

We will consider three classes of generalizations:
• Exel-Laca algebras
• ultragraph algebras
• topological graph algebras

One desirable characteristic for our classes is to have a notion of
Condition (L), which will give a Cuntz-Krieger Uniqueness Theorem and
conditions for simplicity.
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Exel-Laca Algebras

Background: The Cuntz-Krieger algebras are C ∗-algebras associated to
n × n matrices with entries in {0, 1}.

Definition

If A is an n × n matrix with entries in {0, 1} and no zero rows, then the
Cuntz-Krieger algebra OA is the universal C ∗-algebra generated by a
collection of partial isometries {Si : 1 ≤ i ≤ n} satisfying the relations

S∗i Si =
n∑

j=1

A(i , j)SjS
∗
j and

n∑
i=1

SiS
∗
i = I .

When A has all 1’s as entries this is the Cuntz algebra On.
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Exel-Laca algebras are Cuntz-Krieger algebras for infinite matrices.

Definition (Exel and Laca)

Let I be a countable set and let A = {A(i , j)i ,j∈I} be a {0, 1}-matrix over
I with no identically zero rows. The Exel-Laca algebra OA is the universal
C ∗-algebra generated by partial isometries {si : i ∈ I} with commuting
initial projections and mutually orthogonal range projections satisfying

s∗i si sjs
∗
j = A(i , j)sjs

∗
j

and ∏
x∈X

s∗x sx

∏
y∈Y

(1− s∗y sy ) =
∑
j∈I

A(X ,Y , j)sjs
∗
j (†)

whenever X and Y are finite subsets of I such that the function

j ∈ I 7→ A(X ,Y , j) :=
∏
x∈X

A(x , j)
∏
y∈Y

(1− A(y , j))

is finitely supported.
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To understand the motivation for this last relation comes from, notice that
combinations of formal infinite sums obtained from the original
Cuntz-Krieger relations could give relations involving finite sums, and (†)
says that these finite relations must be satisfied in OA

Although there is reference to a unit in (†), this relation applies to algebras
that are not necessarily unital, with the convention that if a 1 still appears
after expanding the product in (†), then the relation implicitly states that
OA is unital.
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If E is a graph with no sinks or sources, then C ∗(E ) is an Exel-Laca
algebra. In fact, it can be shown that if E has no sinks or sources, and if
{se , pv : e ∈ E 1, v ∈ E 0} is a Cuntz-Krieger E -family, then {se : e ∈ E 1} is
a collection of partial isometries satisfying the relations defining OBE

,
where BE is the edge matrix of E .

BE (e, f ) =

{
1 if r(e) = s(f )

0 if r(e) 6= s(f )

Not all graph algebras are Exel-Laca algebras; there are examples of graphs
with sinks, and other examples of graphs with sources, whose C ∗-algebras
are not isomorphic to any Exel-Laca algebra.
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There is a Cuntz-Krieger Uniqueness Theorem for Exel-Laca algebras. If A
is a countable square matrix over I with entries in {0, 1}, then we define a
directed graph Gr(A), by letting the vertices of this graph be I , and then
drawing an edge from i to j if and only if A(i , j) = 1.

Theorem (Cuntz-Krieger Uniqueness)

Let I be a countable set and let A = {A(i , j)i ,j∈I} be a {0, 1}-matrix over
I with no identically zero rows. If Gr(A) satisfies Condition (L), and if
ρ : OA → B is a ∗-homomorphism between C ∗-algebras with the property
that ρ(Si ) 6= 0 for all i ∈ I , then ρ is injective.
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The graph Gr(A) is also useful in describing pure infiniteness of Exel-Laca
algebras.

Theorem (Exel and Laca)

Every nonzero hereditary subalgebra of OA contains an infinite projection
if and only if Gr(A) satisfies Condition (L) and every vertex in Gr(A) can
reach a cycle in Gr(A).
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Simplicity for Exel-Laca algebras is more complicated. Exel and Laca
showed that if Gr(A) is transitive and not a single cycle, then OA is simple.

A complete characterization of simplicity was obtained by Szymański; he
defined a notion of saturated hereditary subset for A, and proved that OA

is simple if and only if Gr(A) satisfies Condition (L) and A has no proper
nontrivial saturated hereditary subsets.

Note: There are examples of a matrix A such that OA is simple, but
C ∗(Gr(A)) is not simple!

Szymański’s result can also be used to show that the dichotomy holds for
simple Exel-Laca algebras: every simple Exel-Laca algebra is either AF or
purely infinite.
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In addition, the universal property of OA gives a gauge action
γ : T→ AutOA with γz(Si ) = zSi , and there is a gauge-invariant
uniqueness theorem for Exel-Laca algebras.

Exel and Laca have also calculated the K -theory of OA, as
K0(OA) ∼= coker(At − I ) and K1(OA) ∼= ker(At − I ), where
At − I :

⊕
I Z→ R and R is an appropriate codomain.
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Ultragraph Algebras

Exel-Laca algebra lack some of the visual appeal found with graph
algebras. There has been an attempt to study Exel-Laca algebras using a
generalized notion of a graph, called an “ultragraph”.

An ultragraph G = (G 0,G1, r , s) consists of a countable set of vertices G 0,
a countable set of edges G1, and functions s : G1 → G 0 and
r : G1 → P(G 0), where P(G 0) denotes the collection of nonempty subsets
of G 0.

Note that a graph may be viewed as a special type of ultragraph in which
r(e) is a singleton set for each edge e.
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A convenient way to draw ultragraphs is to first draw the set G 0 of
vertices, and then for each edge e ∈ G1 draw an arrow labeled e from s(e)
to each vertex in r(e). For instance, the ultragraph given by

G 0 = {v ,w , x} and G1 = {e, f , g}

s(e) = v s(f ) = w s(g) = x

r(e) = {v ,w , x} r(f ) = {x} r(g) = {v ,w}

may be drawn as

v

e

-- e //

e

��

w

f

��
x

g

TT

g

ZZ

Thus in the above example there are only three edges, e, f , and g , despite
the fact that there are six arrows drawn.
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For an ultragraph G = (G 0,G1, r , s) we let G0 denote the smallest
subcollection of the power set of G 0 that contains {v} for all v ∈ G 0,
contains r(e) for all e ∈ G1, and is closed under finite intersections, finite
unions, and relative complements (i.e., A,B ∈ G0 implies A \ B ∈ G0).

Definition (T)

If G is an ultragraph, a Cuntz-Krieger G-family is a collection of partial
isometries {se : e ∈ G1} with mutually orthogonal ranges and a collection
of projections {pA : A ∈ G0} that satisfy

1 p∅ = 0, pApB = pA∩B , and pA∪B = pA + pB − pA∩B for all A,B ∈ G0

2 s∗e se = pr(e) for all e ∈ G1

3 ses∗e ≤ ps(e) for all e ∈ G1

4 pv =
∑

s(e)=v ses∗e when 0 < |s−1(v)| <∞.

We define C ∗(G) to be the C ∗-algebra generated by a universal
Cuntz-Krieger G-family.

When A is a singleton set {v}, we write pv in place of p{v}.
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When G has the property that r(e) is a singleton set for every edge e, then
G may be viewed as a graph (and, in fact, every graph arises this way).

In this case G0 is simply the finite subsets of G 0, and if {se , pv} is a
Cuntz-Krieger family for the graph algebra associated to G, then by
defining

pA :=
∑
v∈A

pv

we see that {pA, se} is a Cuntz-Krieger G-family.

Thus the graph algebra and the ultragraph algebra for G coincide in this
situation.
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Moreover, every Exel-Laca algebra is an ultragraph algebra.

Given a matrix B, one creates an ultragraph GB with edge matrix B, and
then C ∗(GB) ∼= OB .

Thus ultragraphs give a framework for studying graph algebras and
Exel-Laca algebras simultaneously.

Mark Tomforde (University of Houston) Generalizations of Graph Algebras July, 2010 16 / 34



A path in an ultragraph G is a sequence of edges α1 . . . αn with
s(αi ) ∈ r(αi−1) for i = 2, 3, . . . , n

Definition

If G is an ultragraph, then a cycle is a path α1 . . . αn with s(α1) ∈ r(αn).
An exit for a cycle is either of the following:

1 an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi ) but
e 6= αi+1

2 a sink w such that w ∈ r(αi ) for some i .

(Note that if α1 . . . αn is a cycle without an exit, then r(αi ) is a single
vertex for all i .)
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Condition (L): Every cycle in G has an exit; that is, for any cycle
α := α1 . . . αn there is either an edge e ∈ G1 such that s(e) ∈ r(αi ) and
e 6= αi+1 for some i , or there is a sink w with w ∈ r(αi ) for some i .

Theorem (Cuntz-Krieger Uniqueness)

Let G be an ultragraph satisfying Condition (L). If ρ : C ∗(G)→ B is a
∗-homomorphism between C ∗-algebras, and if ρ(pv ) 6= 0 for all v ∈ G 0,
then ρ is injective.

Note that if ρ(pv ) 6= 0 for all v ∈ G 0, then ρ(pA) 6= 0 for all nonempty
A ∈ G0, since pA dominates pv for all v ∈ A.
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Furthermore, by the universal property for C ∗(G) there exists a gauge
action γz : T→ Aut C ∗(G) with γz(pA) = pA and γz(se) = zse for all
A ∈ G0 and e ∈ G 1.

Theorem (Gauge-Invariant Uniqueness)

Let G be an ultragraph, {se , pA} the canonical generators in C ∗(G), and γ
the gauge action on C ∗(G). Also let B be a C ∗-algebra, and
ρ : C ∗(G)→ B be a ∗-homomorphism for which ρ(pv ) 6= 0 for all v ∈ G 0.
If there exists a strongly continuous action β of T on B such that
βz ◦ ρ = ρ ◦ γz for all z ∈ T, then ρ is injective.
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To discuss simplicity we need a notion of saturated hereditary collections.
A subcollection H ⊂ G0 is hereditary if

1 whenever e is an edge with {s(e)} ∈ H, then r(e) ∈ H
2 A,B ∈ H, implies A ∪ B ∈ H
3 A ∈ H, B ∈ G0, and B ⊆ A, imply that B ∈ H.

A hereditary subcollection H ⊂ G0 is saturated if for any v ∈ G 0 with
0 < |s−1(v)| <∞ we have that

{r(e) : e ∈ G1 and s(e) = v} ⊆ H =⇒ {v} ∈ H.
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Theorem (T)

An ultragraph algebra G is simple if and only if G satisfies Condition (L)
and G0 contains no saturated hereditary subcollections other than ∅ and
G0.

In addition, the dichotomy holds for simple ultragraph algebras; every
simple ultragraph algebra is either AF or purely infinite.
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Question: How do ultragraph algebras, Exel-Lacal algebras, and graph
algebras compare?

For the isomorphism classes, we get the following diagram.
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When we only look up to Morita equivalence, there is no difference among
the classes.

Theorem (Katsura, Sims, T)

Ultragraph algebras, Exel-Lacal algebras, and graph algebras coincide up
to Morita equivalence.

Let’s revisit the isomorphism classes, and to get an idea of the differences,
let’s consider AF-algebras. Each class contains different AF-algebras, and
the AF-algebras are sufficient to distinguish among the classes.
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Region unital C∗-algebra nonunital C∗-algebra

(a) cc c0 ⊕ cc

(b) K+ c0

(c) M2∞ ⊕ C M2∞ ⊕ C⊕K
(d) M2(K+) M2(K+)⊕K
(e) — C∗(F2)

(f) M2∞ M2∞ ⊕K

K+ = unitization of K, c0 := {f : N→ C | limn→∞ f (n) = 0}, cc := {f : N→ C | limn→∞ f (n) ∈ C}
F2 denotes the graph v1 v2 v3 v4 . . .
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Topological Graph Algebras

Definition (Katsura)

A topological graph is a quadruple

E = (E 0,E 1, r , s)

consisting of a second countable locally compact Hausdorff space E 0

(whose elements are called vertices), a second countable locally compact
Hausdorff space E 1 (whose elements are called edges), a local
homeomorphism r : E 1 → E 0, and a continuous map s : E 1 → E 0.

(Katsura actually interchanged the roles of r and s. We write it this way
for consistency with our other notation.)

Note that when E 0 and E 1 have the discrete topology, this is just a graph.

Topological graphs have been studied extensively by Katsura.
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To create the C ∗-algebra associated to E , we mimic the construction of
the graph C ∗-correspondence.

Given a topological graph E = (E 0,E 1, r , s) let A := C0(E 0) and define an
A-valued inner product on Cc(E 1) by

〈ξ, η〉A(v) :=
∑

r(α)=v

ξ(α)η(α).

The fact that r is a local homeomorphism assures us that this sum is finite.

We let X (E ) denote the closure of Cc(E 1) in the norm arising from this
inner product. We define a right action of A on X (E ) by

ξ · f (α) := ξ(α)f (r(α))

and extending to all of X . We also define a left action φ : A→ L(X ) by
setting

φ(f )ξ(α) := f (s(α))ξ(α)

and extending to all of X (E ). We call X (E ) the C ∗-correspondence
associated to E .
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Definition (Katsura)

If E is a topological graph, then we define C ∗(E ) := OX (E), where X (E )
is the C ∗-correspondence associated to E . We let (πE , tE ) denote the
universal JX (E)-coisometric representation of X (E ) into C ∗(E ).

Since A := C0(E 0) is a commutative C ∗-algebra, ideals of A correspond to
open subsets of E 0.

If E = (E 0,E 1, r , s) is a topological graph, we define the following:

1 E 0
sinks := E 0\s(E 1)

2 E 0
fin := {v ∈ E 0 : there exists a precompact neighborhood V of v such

that s−1(V ) is compact. }
3 E 0

reg := E 0
fin\E 0

sinks

Then
ker φ = C0(E 0

sinks), φ−1(K(X )) = C0(E 0
fin), and JX = C0(E 0

reg).
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Because they are Cuntz-Pimsner algebras, topological graph algebras have
a natural gauge action γ : T→ Aut C ∗(E ) with

γz(πE (a)) = πE (a) and γz(tE (x)) = z tE (x)

for a ∈ A and x ∈ X (E ).

Theorem (Guage-Invariant Uniqueness)

Let E be a topological graph. Let ρ : C ∗(E )→ B be a ∗-homomorphism
between C ∗-algebras with the property that ρ|πE (A) is injective. If there
exists a gauge action β : T→ Aut B such that βz ◦ ρ = ρ ◦ γz , then ρ is
injective.
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Let E = (E 0,E 1, r , s) be a topological graph. We say that a subset
U ⊆ E 0 is hereditary if whenever α ∈ E 1 and s(α) ∈ U, then r(α) ∈ U.
We say that a hereditary subset U is saturated if v ∈ E 0

reg and
r(s−1(v)) ⊆ U implies v ∈ U.

Theorem

Let E = (E 0,E 1, r , s) be a topological graph with the property that
E 0

reg = E 0. Then there is a bijective correspondence from the set of
saturated hereditary open subsets of E 0 onto the gauge-invariant ideals of
C ∗(E ) given by

U 7→ IU := the ideal in C ∗(E ) generated by πE (C0(U)).

Furthermore, IU is Morita equivalent to C ∗(EU), where EU is the
subgraph of E whose vertices are U and whose edges are s−1(U), and
C ∗(E )/IU ∼= C ∗(E \ U), where E \ U is the subgraph of E whose vertices
are E 0 \ U and edges are E 1 \ r−1(U).

(In general, the gauge-invariant ideals of C ∗(E ) correspond to pairs (U,V )
of admissible subsets.)
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There is a version of Condition (L) and a Cuntz-Krieger Uniqueness
Theorem for topological graph algebras. Note that Condition (L) makes
use of the topology on E 0.

Condition (L): The set of base points of cycles in E with no exits has
empty interior.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a topological graph that satisfies Condition (L). If ρ : C ∗(E )→ B
is a ∗-homomorphism from C ∗(E ) into a C ∗-algebra B with the property
that the restriction ρ|πE (A) is injective, then ρ is injective.
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Furthermore, simplicity of topological graph algebras algebras has been
characterized

Theorem

The topological graph algebra C ∗(E ) is simple if and only if E satisfies
Condition (L) and there are no saturated hereditary open subsets of E 0

other than ∅ and E 0.

The dichotomy does not hold for topological graph algebras: There are
simple topological graph algebras that are neither AF nor purely infinite.
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Also, there is a version of Condition (K) for topological graph algebras.

We write w ≥ v to mean that there is a path α with s(α) = w and
r(α) = v . We also define

v≥ := {w ∈ E 0 : w ≥ v}.

Condition (K): The set

{v ∈ E 0 : v is the base point of exactly one

simple cycle and v is isolated in v≥ }

is empty.

Theorem

Let E = (E 0,E 1, r , s) be a topological graph that satisfies Condition (K).
Then every ideal in C ∗(E ) is gauge invariant.

Mark Tomforde (University of Houston) Generalizations of Graph Algebras July, 2010 32 / 34



The class of topological graph algebras contains
• every AF algebra
• every Kirchberg algebra (and hence all K -groups are possible)
• Matsumoto’s C ∗-algebras associated to subshifts
• every ultragraph algebra
• every Exel-Laca algebra
• every graph algebra
• many other classes we haven’t talked about

Remark: I believe that currently there are no known examples of a nuclear
C ∗-algebra satisfying the Universal Coefficients Theorem that is not a
topological graph algebra.
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Topological graphs can also be used to study ultragrph algebras (which
contain Exel-Laca algebras and graph C ∗-algebras as special cases).

Given an ultragraph G, one can build a topological graph EG in such a way
that the ultragraph C ∗-algebra C ∗(G) and the topological graph algebra
C ∗(EG)coincide. Topological graph algebra results can then be used to
study ultragraph algebras, and give theorems that have not been obtained
by any other methods.
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