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In its beginnings, the study of Operator Algebras received a great deal of
motivation from Ring Theory.

Nowadays, both Operator Algebra and Ring Theory have great potential
to influence, inspire, and explain much of the work being done in the other
subject.

Today I would like to tell you about a novel way in which this interplay
between Operator Algebra and Ring Theory continues.
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Leavitt path algebras and graph C ∗-algebras: A Brief History

It is likely that when you first learned of rings you studied the examples

Z, fields, matrix rings, polynomial rings

These all have the Invariant Basis Number property:

Rm ∼= Rn (as left R-modules) implies m = n.
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In the 1950’s Bill Leavitt showed that if R is a unital ring, then R1 ∼= Rn

for n > 1 if and only if there exist x1, . . . , xn, x
∗
1 , . . . , x

∗
n ∈ R such that

1 x∗i xj = δij1R

2

n∑
i=1

xix
∗
i = 1R .

For a given field K , we let LK (1, n) denote the K -algebra generated by
elements

x1, . . . , xn, x
∗
1 , . . . , x

∗
n

satisfying the relations (1) and (2) above.
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In 1977 J. Cuntz introduced a class of C ∗-algebras (now called Cuntz
algebras) generated by n nonunitry isometries. Specifically, if n > 1 the
C ∗-algebra On is generated by isometries s1, . . . , sn satisfying

1 s∗i sj = δij Id

2

n∑
i=1

si s
∗
i = Id.

Note: LC(1, n) is isomorphic to a dense ∗-subalgebra of On.

The Cuntz algebras have been generalized in a number of ways, including
(in the late 1990’s) the graph C ∗-algebras.
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Definition

A graph (E 0,E 1, r , s) consists of a countable set E 0 of vertices, a
countable set E 1 of edges, and maps r : E 1 → E 0 and s : E 1 → E 0

identifying the range and source of each edge.

A path in E is a sequence of edges α := e1 . . . en with r(ei ) = s(ei+1).

We write r(α) = r(en) and s(α) = s(e1), and say α has length |α| = n.

We consider vertices to be paths of length zero, with s(v) = r(v) = v .

The set of all paths is denoted E ∗.

A cycle is a path α with |α| ≥ 1 and s(α) = r(α).
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Definition

If E is a graph, the graph C ∗-algebra C ∗(E ) is the universal C ∗-algebra
generated by a Cuntz-Krieger E -family, which consists of mutually
orthogonal projections {pv : v ∈ E 0} and partial isometries with mutually
orthogonal ranges {se : e ∈ E 1} satisfying

1 s∗e se = pr(e) for all e ∈ E 1

2 pv =
∑
{e∈E1:s(e)=v} ses∗e for all v ∈ E 0 with 0 < |s−1(v)| <∞

3 ses∗e ≤ ps(e) for all e ∈ E 1.

If A is a C ∗-algebra and {Pv , Se} ⊆ A are elements satisfying the above
conditions, then there exists a unique ∗-homomorphism φ : C ∗(E )→ A
satisfying φ(pv ) = Pv and φ(se) = Se .

For a path α := e1 . . . en in E , we define sα := se1 . . . sen . We see that

C ∗(E ) = span{sαs∗β : α, β ∈ E ∗ and r(α) = r(β)}.
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The graph E not only describes the relations that the generators of C ∗(E )
satisfy, but also many C ∗-algebraic properties of C ∗(E ) correspond to
graph properties of E .

C∗(E) Properties of E

Unital finite number of vertices

Finite Dim. finite graph with no cycles

(1) Every cycle has an exit
Simple (2) No saturated hereditary sets

Simple and (1) Every cycle has an exit
Purely (2) No saturated hereditary sets
Infinite (3) Every vertex can reach a cycle

AF no cycles
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Recall that much of the structure of C ∗(E ) is deduced from the
Uniqueness Theorems.

Theorem (Gauge-Invariant Uniqueness)

Let E be a graph, and let γ : T→ Aut C ∗(E ) be the gauge action on
C ∗(E ). Also let φ : C ∗(E )→ A be a ∗-homomorphism between
C ∗-algebras. If β : T→ Aut A is a gauge action on A and the following
two conditions are satisfied

1 βz ◦ φ = φ ◦ γz for all z ∈ T
2 φ(pv ) 6= 0 for all v ∈ E 0

then φ is injective.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a graph in which every cycle has an exit. If φ : C ∗(E )→ A is a
∗-homomorphism between C ∗-algebras with the property that φ(pv ) 6= 0
for all v ∈ E 0, then φ is injective.
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Inspired by the success of graph C ∗-algebras, Gene Abrams and Gonzalo
Aranda-Pino introduced Leavitt path algebras.

Definition

Given a graph E = (E 0,E 1, r , s) and a field K , we let (E 1)∗ denote the set
of formal symbols {e∗ : e ∈ E 1} (called ghost edges). The Leavitt path
algebra LK (E ) is the universal K -algebra generated by a set {v : v ∈ E 0}
of pairwise orthogonal idempotents, together with a set {e, e∗ : e ∈ E 1} of
elements satisfying

1 s(e)e = er(e) = e for all e ∈ E 1

2 r(e)e∗ = e∗s(e) = e∗ for all e ∈ E 1

3 e∗f = δe,f r(e) for all e, f ∈ E 1

4 v =
∑

s(e)=v

ee∗ when 0 < |s−1(v)| <∞.
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We see that

LK (E ) = spanK{αβ∗ : α, β ∈ E ∗ and r(α) = r(β)}.

When K = C, we may define a conjugate-linear involution ∗ on LC(E ) by(
n∑

i=1

λiαiβ
∗
i

)∗
=

n∑
i=1

λiβiα
∗
i ,

which makes LC(E ) into a ∗-algebra.
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C∗(E) LK(E) Properties of E

Unital Unital finite number of vertices

Finite Dim. Finite Dim. finite graph with no cycles

(1) Every cycle has an exit
Simple Simple (2) No saturated hereditary sets

Simple and Simple and (1) Every cycle has an exit
Purely Purely (2) No saturated hereditary sets
Infinite Infinite (3) Every vertex can reach a cycle

AF ultramatricial no cycles
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Many theorems from each class seem to have a corresponding theorem in
the other, and the graph theoretic properties on E equivalent to an
algebraic property on LK (E ) often seem to be the same as the those graph
theoretic properties equivalent to the corresponding C ∗-algebraic property
of C ∗(E ).

These similarities might suggest that such structural properties, once
obtained on either the graph C ∗-algebra side or on the Leavitt path
algebra side, might then immediately be translated via some sort of
Rosetta stone to the corresponding property on the other side.

Nonetheless, a vehicle to transfer information in this way remains elusive,
and in fact, researchers seem uncertain how to even formulate conjectures
that would lead to such a vehicle.
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Structure theorems for Leavitt path algebras.

Theorem (Cuntz-Krieger Uniqueness for graph C ∗-algebras)

Let E be a graph in which every cycle has an exit. If φ : C ∗(E )→ A is a
∗-homomorphism between C ∗-algebras with the property that φ(pv ) 6= 0
for all v ∈ E 0, then φ is injective.

A version of this can be proven for Leavitt path algebras.

Theorem (Cuntz-Krieger Uniqueness for Leavitt path algebras)

Let E be a graph in which every cycle has an exit. If φ : LK (E )→ R is a
homomorphism between rings with the property that φ(v) 6= 0 for all
v ∈ E 0, then φ is injective.
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What about the Gauge-Invariant Uniqueness Theorem?

Theorem (Gauge-Invariant Uniqueness)

Let E be a graph, and let γ : T→ Aut C ∗(E ) be the gauge action on
C ∗(E ). Also let φ : C ∗(E )→ A be a ∗-homomorphism between
C ∗-algebras. If β : T→ Aut A is a gauge action on A and the following
two conditions are satisfied

1 βz ◦ φ = φ ◦ γz for all z ∈ T
2 φ(pv ) 6= 0 for all v ∈ E 0

then φ is injective.

How can a version of this theorem be obtained for Leavitt path algebras?
There is no natural action of T on LK (E ).

What about an action of K ∗ on LK (E )? This does not work.
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The correct thing to do is look at the graded structure of LK (E ).

A ring R is Z-graded if it contains a collection of subgroups {Rn}n∈Z with
R =

⊕
Rn as left R-modules and RmRn ⊆ Rm+n.

An ideal I / R is Z-graded if I =
⊕

n∈Z(I ∩ Rn).

A ring homomorphism φ : R → S is Z-graded if φ(Rn) ⊆ Sn for all n ∈ Z.

For n ∈ Z, let

LK (E )n := span{αβ∗ : α and β are paths with |α| − |β| = n}.

This gives a Z-grading on LK (E ).
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We can prove the following “Graded Uniqueness Theorem”.

Theorem (Graded Uniqueness Theorem)

Let E be a graph, and let LK (E ) have the Z-grading described above.
Also let φ : LK (E )→ R be a homomorphism between rings. If the
following two conditions are satisfied

1 R has a Z-grading and φ(LK (E )n) ⊆ Rn

2 φ(v) 6= 0 for all v ∈ E 0

then φ is injective.
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This Graded Uniqueness Theorem allows us to prove that the graded ideals
in LK (E ) correspond to pairs (H, S) where H is a saturated hereditary
subset of vertices and S is a subset of breaking vertices.

Furthermore, if E is row-finite (there are no vertices that emit an infinite
number of edges) then there are no breaking vertices and the map

H 7→ IH := 〈{v : v ∈ H}〉

is a lattice isomorphism from saturated hereditary subsets of vertices in E
onto graded ideals of LK (E ).

Also, in this case, we have

LK (E )/IH ∼= LK (E \ H)

and
IH is Morita equivalent to LK (EH).
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Remark: If E is a graph, and {pv , se : v ∈ E 0, e ∈ E 1} is a generating
Cuntz-Krieger family for C ∗(E ), then the pv ’s and se ’s satisfy the relations
for the generators of a Leavitt algebra, and we get a homomorphism (in
fact, a ∗-homomorphism)

ιE : LC(E )→ C ∗(E )

mapping v 7→ pv and e 7→ se .

It can be shown (using the Graded Uniqueness Theorem) that ιE is
injective. Thus if we write

C ∗(E ) = span{sαs∗β : α, β ∈ E ∗ and r(α) = r(β)},

then LC(E ) may be identified with the dense ∗-subalgebra

span{sαs∗β : α, β ∈ E ∗ and r(α) = r(β)}.
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The fact that LC(E ) is a dense ∗-subalgebra of C ∗(E ) does not explain the
similarities between LC(E ) and C ∗(E ). It is possible for a C ∗-algebra to
have vastly different properties from a dense ∗-subalgebra.

Different graphs can give rise to the same Leavitt path algebra. Similarly,
different graphs can give rise to the same C ∗-algebra. Given that the
graph completely determines the associated Leavitt path algebra, and the
same properties of the graph that determine each algebraic properties tend
to determine the corresponding C ∗-algebraic property of the graph
C ∗-algebra, it is natural to ask the following:

Question: If E and F are graphs and LC(E ) ∼= LC(F ), then is it the case
that C ∗(E ) ∼= C ∗(F )?

We need to be a bit more careful about what we mean by ∼=.
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Question: If E and F are graphs and LC(E ) ∼= LC(F ) (as ∗-algebras),
then is it the case that C ∗(E ) ∼= C ∗(F ) (as ∗-algebras)?

Suppose φ : LC(E )→ LC(F ) is an algebra ∗-homomorphism.

Recall we have injective ∗-homomorphisms ιE : LC(E )→ C ∗(E ) and
ιF : LC(F )→ C ∗(F ).
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If
{v , e, e∗ : v ∈ E 0, e ∈ E 1}

is a generating E -family for LC(E ), then

{φ(v), φ(e), φ(e∗) : v ∈ E 0, e ∈ E 1}

is a Leavitt E -family in LC(F ). Also,

{ιF (φ(v)), ιF (φ(e)) : v ∈ E 0, e ∈ E 1}

is a Cuntz-Krieger E -family in C ∗(F ).

Thus we obtain a ∗-homomorphism φ : C ∗(E )→ C ∗(F ) making

C ∗(E )
φ // C ∗(F )

LC(E )

ιE

OO

φ // LC(F )

ιF

OO

commute. Moroever, if φ is an algebra ∗-isomorphism, then so is φ.
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Thus we have proven

Theorem

If E and F are graphs and LC(E ) ∼= LC(F ) (as ∗-algebras), then
C ∗(E ) ∼= C ∗(F ) (as ∗-algebras). Moreover, any ∗-isomorphism from
LC(E ) to LC(F ) lifts to a ∗-isomorphism from C ∗(E ) to C ∗(F ).

A similar argument shows

Theorem

If E and F are graphs and LC(E ) ∼= LC(F ) (as ∗-rings), then
C ∗(E ) ∼= C ∗(F ) (as ∗-algebras).

So if the ∗-structure is preserved, things are okay. In fact, we can extend
algebra ∗-homomorphisms from Leavitt path algebras to graph
C ∗-algebras.
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What about when the ∗-structure is not preserved? We make two
conjectures.

Conjecture 1: If E and F are graphs and LC(E ) ∼= LC(F ) (as rings), then
C ∗(E ) ∼= C ∗(F ) (as ∗-algebras).

Conjecture 2: If E and F are graphs and LC(E ) is Morita equivalent to
LC(F ) (as rings), then C ∗(E ) is Morita equivalent to C ∗(F ) (as
C ∗-algebras).

We can verify the two conjectures in the case when the graphs have no
cycles (equivalently, the associated Leavitt path algebras are ultramatricial;
equivalently, the associated graph C ∗-algebras are AF-algebras).

We can also verify the two conjectures in the case when the associated
Leavitt path algebras are simple (equivalently, the associated graph
C ∗-algebras are simple).

We accomplish this with K -theory classification theorems.
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The K -theory of a graph C ∗-algebra can be computed.
If E is a graph with no sinks and no infinite emitters, let AE be the square
matrix indexed by vertices with

AE (v ,w) := number of edges from v to w }.

Consider the map

At
E − I :

⊕
E0

Z −→
⊕
E0

Z.

Then
K0(C ∗(E )) ∼= coker At

E − I

K1(C ∗(E )) ∼= ker At
E − I .

Also,

K0(C ∗(E ))+ =

{[( x1
x2
...

)]
0

: xi ∈ N
}

and

[1]0 =

[(
1
...
1

)]
0

.
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Elliott’s Theorem applies to dense ∗-subalgebras. Also the K0-group of
LK (E ) is the same as the K0-group of C ∗(E ).

Theorem ((Elliott))

Let A and B be AF C ∗-algebras, let R be a dense ultramatricial
∗-subalgebra of A, and let S be a dense ultramatricial ∗-subalgebra of B.
Then the following are equivalent:

1 A ∼= B (as ∗-algebras)

2 R ∼= S (as ∗-algebras)

3 R ∼= S (as algebras)

4 (K0(A),K0(A)+,Σ(A)) ∼= (K0(B),K0(B)+,Σ(B))

5 (K0(R),K0(R)+,Σ(R)) ∼= (K0(S),K0(S)+,Σ(S))

Thus for graphs with no cycles, the complex Leavitt path algebras are
classified by their K0-groups.
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Theorem

If E and F are graphs with no cycles, then C ∗(E ) ∼= C ∗(F ) (as ∗-algebras)
if and only if LC(E ) ∼= LC(F ) (as algebras).

This is one part of the simple case. For the general case, we cannot obtain
an “if and only if” statement.
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Let E and F be graphs such that LK (E ) and LK (F ) are either both
ultramatricial or both simple.

Then . . .

LC(E ) ∼= LC(F ) (as algebras)

=⇒ algebraic K -groups of LC(E ) and LC(F )
are isomorphic

=⇒ topological K -groups of C ∗(E ) and C ∗(F )
are isomorphic (this takes some work)

=⇒ C ∗(E ) ∼= C ∗(F ) (as ∗-algebras)
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Some results about Morita equivalence

Recall: Two unital rings are defined to be Morita equivalent if and only if
their categories of left modules are equivalent if and only if there exists an
equivalence bimodule between the rings.

The notion of Morita equivalence has also been extended by Abrams
(1983) to rings with local units. Leavitt path algebras have local units.

Rieffel developed a notion of Morita equivalence for C ∗-algebras:

Two C ∗-algebras are Morita equivalent if and only if their categories of
Hermitian modules are equivalent.

Two C ∗-algebras are strongly Morita equivalent if there exists an
equivalence C ∗-bimodule between them.
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Two stabilization theorems:

Theorem (Brown-Green-Rieffel)

Let A and B be C ∗-algebras, each with a countable approximate identity.
Then A ∼SME B if and only if A⊗K ∼= B ⊗K.

Theorem (Stephenson, Abrams-T)

Suppose that R and S are rings, each with local units. Then R ∼ME S if
and only if M∞(R) ∼= M∞(S).
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Using these stabilization theorems, we can prove a Morita equivalence
version of Elliott’s Theorem.

Theorem

Let A and B be AF C ∗-algebras, let R be a dense ultramatricial
∗-subalgebra of A, and let S be a dense ultramatricial ∗-subalgebra of B.
Then the following are equivalent:

1 A ∼SME B

2 R ∼ME S

3 (K0(A),K0(A)+) ∼= (K0(B),K0(B)+)

4 (K0(R),K0(R)+) ∼= (K0(S),K0(S)+)
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Given a graph E , let SE be the graph formed attaching an infinite “head”
to each vertex v

. . . // • // • // • // v

to E . We call SE the stabilization of E .
Example: If E is the graph

•

��@
@@

@@
@@

•

•

??~~~~~~~
// •

��

then SE is the graph

· · · // • // • // •

��@
@@

@@
@@

• •oo •oo · · ·oo

· · · // • // • // • // •

??~~~~~~~
// •

��
•oo •oo · · ·oo

Lemma: If E is a graph, then
(1) LC(SE ) ∼= M∞(LC(E )) (as ∗-algebras)
(2) C ∗(SE ) ∼= C ∗(E )⊗K (as ∗-algebras)
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Let E and F be graphs such that LC(E ) and LC(F ) are either both AF or
both simple.

Then . . .
LC(E ) ∼ME LC(F )

=⇒ M∞(LC(E )) ∼= M∞(LC(F )) [stabilization result]

=⇒ LC(SE ) ∼= LC(SF ) (as algebras) [by lemma]

=⇒ C ∗(SE ) ∼= C ∗(SF ) (as ∗-algebras)

=⇒ C ∗(E )⊗K ∼= C ∗(F )⊗K [by lemma]

=⇒ C ∗(E ) ∼SME C ∗(F ) [by Brown-Green-Reiffel].
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Some differences between Leavitt path algebras and graph C ∗-algebras

There is an example of a graph E for which the Leavitt path algebra
LK (E ) is prime (i.e., {0} is a prime ideal), but C ∗(E ) is not prime
(i.e., {0} is not a prime ideal).

There is an example of a graph E for which the Leavitt path algebra
LK (E ) has stable rank 2 , but C ∗(E ) has stable rank 1.
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Carlsen and Ortega have described an algebraic analogue of the
Cuntz-Pimsner algebras.

Given a ring R, an R-system is a triple (P,Q, ψ) where P and Q are
R-bimodules and ψ : P ⊗ Q → R is an R-bimodule homomorphism.

The algebraic Cuntz-Pimsner ring O(P,Q,ψ) generalizes

the Leavitt path algebra

the crossed product of a ring by an automorphism

the fractional skew monoid ring of a corner isomorphism

Moreover, there is a Graded Uniqueness Theorem for O(P,Q,ψ) and one
can classify the graded ideals of O(P,Q,ψ) in terms of pairs of ideals in R.
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